Reference Manual

KONFABULATOR 4.5

Yahoo! Widgets
Version 4.5

Copyright 2007 Yahoo! Inc.
All Rights Reserved

Release History

First Release February 10, 2003
Second Release February 12, 2003
Third Release February 15, 2003
Fourth Release February 19, 2003
Fifth Release Version 1.5 July 23, 2003

Sixth Release Version 1.5.1 September 26, 2003
Seventh Release October 8, 2003
Eighth Release Version 1.6.2 June 6, 2004

Ninth Release Version 1.8 November 8, 2004
Tenth Release Version 1.8.1 November 24, 2004
Eleventh Release Version 1.8.3 January 18, 2005
Twelfth Release Version 2.1 July 23, 2005
Thirteenth Release Version 2.1.1 August 3, 2005
Fourteenth Release Version 3.0 December 7, 2005
Fifteenth Release Version 3.0.x January 6, 2006
Sixteenth Release Version 3.1 March 30, 2006
Seventeenth Release Version 3.1.1 April 14, 2006
Eighteenth Release Version 4.0 March 22, 2007
Nineteenth Release Version 4.5 November 27, 2007

Thanks to all who have submitted comments and corrections.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
http://www.openssl.org/

2 | KONFABULATOR 4.5 REFERENCE MANUAL

Contents

Release Historyot innnnnnnnnnnnnns

The BasSiCStuiruernnrsnnssnssnsnnnnnnnnnsnnsss23

Widget Consolidation 24
XML Syntax 24
JavaSCript . . 24
File Paths. . ..o 25
Widget Metadata 25
CSS StYleS . o oo 26
Event Handlers 26
Object Nameso 27
Widget Preferences. 27
Frames and Subviews 28
Working with the Widget Dock. 28

Publishing Your Widgetcicciiinnennnnnnaa31

Widget File Structure.o 31
Widget Packaging. o 31
Giving Your Widget an Identifier. 32
Updating Your Widget 32
Digital Signatures 32
Security WINdOWS oo 32
UMY o oo 33
Security Definition Details 33
What happened to api? 34
What about older widgets? 34
Security Violation 34

Advancedtcieuennsnnsnnnnnnnnnnnnnnnssss35

Migrating From Previous VErsions. 35
VErsioN 3.0 .. 35
VerSION 3.1 o 36
VErsion 4.0 36
VerSION 4.5 36

Entities 37

Widget Runtime 38

DEbUGING . . o 38

EXCEpPiONS. . . o 39

XML SEIVICES. . . oo 39

Yahoo! Login Support. 39

Localized Widgetso 40

% KONFABULATOR 4.5 REFERENCE MANUAL 3

Contents

Core DOM Reference v cceueennnnnnnnsnnsnnssnsa.43

L) L= Y 43
XML DOM APl . . e it e st a st e aaa e 44
DOMEXCEPLION oo 44
DOMDOCUMENT 44
DOMNOAE . . .o 45
DOMNoOdELISt. e 46
DOMNamedNodeMap 46
DOMCharacterData 47
DOMALttribUte 48
DOMElement 48
DOMT Xt . . o 48
DOMCOMMeENt. . . . 49
DOMOCDATASECHiON 49
DOMDoOcUmMENtTYPEo 49
DOMNoOtatioNn. 49
DOMENTItY . . . oo 49
DOMENtityReference 49
DOMProcessingInstruction 49
Common Attributes and Functions i 50
contextMenultems 51
AL gN . 51
height . o 52
hOffset . . 52
o 53
firstChild 53
lastChild 54
NAMIE. .« o . e e 54
NextSIbling . . 55
PreviousSibling 55
ONClick 56
onContextMenuU 56
ONDragDIOD . . o e 56
onDragEnter 56
onDragExit 56
ONMOUSED OWN . . . o 56
onMouseDrag. 56
ONMoOUSEENTEr. 57
ONMOUSEEXIT. . . . 57
ONMOUSEMOVE . . . 57
ONMOUSEUD . . oo 57
onMouseWheel. 57
onMURIClick 57
onTextinput 57

4 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

Lo o - o 1 58
parentNOde. 58
(0] = 1T o 1 59
Syl 59
SUDVIBWS . . . o 59
SUPEIVIEW . o o o e e 60
LOOMID . o 60
tracking. . . oo 61
VAN 61
ViSIDle . . 62
VOTfSEt . . 63
WAL L 63
WINAOW. . .. 64
ZOrder . . 64
addSubVIieW() 65
appendChild()o 65
convertPointFromParent() 66
convertPointFromWindow() 66
convertPointToParent() 67
convertPointTOWINdow() 67
getElementByld(). 68
orderADOVE(). 68
orderBelow()o 69
removeChild() 70
removeFromParentNode(). 70
removeFromSUPervieW()o 70
savelmageToFile()o o 71
Y Yo 1 1 A =T 71
aboUt-image 72
about-text. 72
aboUt-VEISION 73
ot 1o o 73
file. 74
INterval . .. 74
B r . 74
LF: T3 1 7 76
getContext()o 77
CanvasRenderingContext2Dottt e 77
fillStyle . 78
globalAlpha. 79
globalCompositeOperation 79
NECap . . o 80
NEJOIN . .o 80
neWidth 81

% KONFABULATOR 4.5 REFERENCE MANUAL 5

Contents

MIiterLimit . . . 81
StrokeStyle . .. 81
addColorStop() . . . oot 82
ANC() o o e 83
beginPath() 83
bezierCUIVETO() . . .ottt 84
clearRect(). o 84
PO e 85
closePath() 85
createLinearGradient(). 86
createPattern() 86
createRadialGradient(). 87
drawlmage() . . . oo o 88
fill) . . o 88
fIRECE) . .ot 89
NETO0) . . oo 89
MOVETO() . . oo ot e e e 90
quadraticCurveTO() v et 20
FECH) . . o 91
FESTOTE() . . oot 91
rotatel) . . .o 92
SAVE) © vt e 92
SCale() 93
SErOKE() . . o o 94
strokeRect().o 94
translate() 95
... 96
allowNetworking. 97
DaSE . .. 98
0 =4 @] o 98
deviceFont 98
frameNumber 929
useFlashContextMenu. 929
flashVars 29
00D e 100
T VA =T £ T 100
onFsCommand 100
onFsReadyState. 101
Ul . o 101
SALI N 101
SCAlE . . 102
] (o 102
WMOAeE . . . 103
DaACK) . . o 103
forward(). 103
getVariable() 104

6

| KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

Frame

OTOFrame)o 104
ISPlAYING() . . o o 104
[0adMOVIE() . . . oo 105
PANC) . . v e e 105
percentloaded() 105
PIAY () o 106
reload() 106
FeWINA() . . . 106
setVariable() 106
setZoomRect(). 107
SEOP() - o 107
STOPPlaY() . . o oo 107
tCallFrame() 108
tCallLabel() o 108
tCurrentFrame()o 108
tCurrentlabel() 109
tGotoFrame() o 109
tGotoLabel() 109
totalFrames).o 110
tGetProperty(). oo 110
tGetPropertyAsSNUMbEr() 110
tGetPropertyNum ()o 111
Play () . o 111
tSetProperty() . . .o 111
tSetPropertyNUm()o 112
EStOPPIaY () - e 112
VEISION) & oottt 112
ZOOMI) ottt 113
Properties and Property Numbers 113
... 114
hLINESIZE. 114
hScrollBar 115
SCrOlX . 115
SCrOllY . 116
VLINESIZE e 116
VSCrollBar 116
eNd() . . . 117
NOmMeE) . . o 117
HNEDOWN() . . . 117
neLeft()o 118
NeRIght() 118
NEUP Q). . o 118
PageDOWN() 119
Pageleft() . . . 119
PageRIght() 119
PABEUD). . . o 120

KONFABULATOR 4.5 REFERENCE MANUAL | 7

Contents

updateScrollBars() o 120
HotKey o ittt e s 120
Y ot 121
Modifier . . 122
ONKEYDOWN . . . 122
ONKEYUD . . o 122
Image e r e e 123
CliPREC . . . 123
COlONIZE . . o 124
fillMode . .. 125
hRegistrationPoint. 125
hslAdjustmento 125
hSITiNting . .o 126
l0adingSrC . . . o 127
IS NG S C . . o et e 127
FEMOTEASYNC. . . o 127
SEC . o 128
SrcHeight. . . 128
SICWIAth « o 129
HleOrigin. . .o 129
USeFIlelcon . . o 129
VRegistrationPoint. 130
fade() . .o 130
MOVETO() . et 130
reload()o 131
Slide) . .o 131
Menultem e 132
checked. 132
enabled. 133
onSelect . .. 133
title . . 133
Point . .. e 134
Preference. oot e 134
defaultValue 135
desCription 136
direCtory .« o 136
EXEENSION L o 136
BIOUD .« v ettt e 137
hidden. . .. 137
KiNd. . 137
maxLength 138
minLength. . .. 138
NOtSAVEd. . . . o 138
Pt ON . . . 138

8 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

optionValue 139
SECUNE « o o i e e et e e e 139
SEYlE o 139
HCKS o 140
tickLabel 140
title . . 140
Y P 141
ValUe 141
PreferenceGroup oottt e 141
0 10 142
7o o 142
OFAE . o 142
title . o 143
Rectangle i e e 143
K e e e e 144
Y 144
WIdEh L 144
height . ..o 145
offset(dX, dY)o 145
INSet(dX, dY) . . 145
BEtMINX () . o 146
BEtMINY () . o 146
BEtMaXX (). . o o 146
BetMaAXY (). . 147
BetMIdX() . . .o 147
GEtMIAY() . . . o 147
SEtEMPLY (). . 148
SEMPLY (). . o 148
makelntegral(). 148
containsPoint(Point [X,y). oo 149
unionWith(Rectangle | x, y, width, height) 149
intersectWith(Rectangle | x, y, width, height) 149
1Yl o 150
1Y o (011 - T 150
autoHide. 151
102 151
D L e 152
onValueChanged 152
orientation e 153
PAGESIZE 153
thumbColor. 153
ValUe. . .. 154
setRaANGE(). . . o 154
setThumbInfo() 155

KONFABULATOR 4.5 REFERENCE MANUAL 9

Contents

setTrackinfo)o oo 155
1Y o1] (1 156
2 T 157
Sethings. 157
1Y £ - U (o 3,2 158
COlOr o e 159
hOffset . . . 159
Lo o - o | 159
VOIS . . 160
134 160
anchorStyle 161
o =4 o o 161
DgOPaCty . . o o 162
COlOT . oo 162
data . .. 162
TNt 163
SCrOlliNg. . . o 163
ShadOW . . . 163
L 7= 164
SEYlE o 165
TrUNCatioN . . . o 165
WEAD . o o 166
fade() . ..o 166
MOVETO() . . oot 167
SHACO) . oo 167
=34 2 Y (- 167
bgColor. . o 168
DgOPaACItY . . o o 169
COlOr o 169
COIUMINS . . 170
data ... 170
editable. 170
TNt 171
NES o 171
ONGaAINFOCUS o e 171
ONKEYDOWN . . . 172
ONK Y PrESS . o o 172
ONKEYUP. . oo 172
ONLOSEFOCUS o 172
SBCUIE & o e e e e e e 172
scrollbar 172
7= 173
spellchecko 173
Syl 173

10 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

thumbColor. 174
TOCUS). . . o e 174
[0SEFOCUS() . . o ot e 175
reJeCteyPress() o 175
replaceSelection() 176
Select() . ..o 176
1T 1= 176
INterval 177
HCKINg . . 177
onTimerFired. 178
FUNCtions i i i e e e e e 178
FeSEL) . . o 178
WD .ot e et 178
SCrOlIX . 179
SCrOllY . 180
UMl 180
hEMl . 180
o =4 oo 181
autoVScrollBar. 181
autoHSCrollBar 182
DasSE . .. 182
VSCrollBar 182
hScrollBar 183
title . . 183
StatusBar. e 183
ONWeEDAIBIt . . . 184
onWebConfirm 184
onWebCreateWindow 184
ONWeEDbEXCEPLION. o 184
onWebLinkClicked 184
onWebPagelLoadComplete 184
ONWeEbPrompt . .o 185
onWebResourceLoadComplete. 185
onWebResourceRequested 185
onWebStatusBarChanged 185
onWebTitleChanged 185
onWebURLChanged 185
StopLoading() oot 185
reload()o 186
Widget . .. e 186
author. . . 187
COMPANY . . o ettt e e e e e e e 187
COPYNgNt. « o 188
debug . .o 188
defaultTracking o 189

KONFABULATOR 4.5 REFERENCE MANUAL | 11

Contents

dockOpen. . . 189
M . . o o 190
locale . .. 190
MINIMUMV EISION . L . o e e e e e e e e 191
onDockClosed. 191
oNDOCKOPENEd. . . o o 191
ONGaAINFOCUS . . . e 192
onldle 192
onKonsposeActivated 192
onKonsposeDeactivated 192
onload 192
ONLOSEFOCUS 192
onPreferencesCancelled 192
onPreferencesChanged 193
onRunCommandIinBgComplete. 193
onScreenChanged. 193
onTellWidget 193
ONT M L 193
onUnload 193
onWakeFromSleep 193
onWillChangePreferences 194
onYahoolLoginChanged. 194
OPION . 194
requiredPlatform 194
VIS O L st e e 195
VisiDle . . 195
createWindowWFromXML().o 195
extractFile() 196
getlocalizedString(). 196
setDockltem()o 196
L7074 T L 197
leVEl . o 198
lockedo 198
onFirstDisplay 199
ONGaiNFOCUS o e 199
ONLOSEFOCUS o 199
FOOL. . 199
ShadoOW . . . 199
title . 200
FOCUS). . . o e 200
getBestDisplay() oo 201
MOVETO() . .ottt 201
recalcShadow() 201

12 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

Eventscciiiiiiereennnncsnnnnnnnnnnnnn====:203

Event Listeners i i i it it e 203
Default Actions. i ettt e e 203
Older Engine Behaviorttt i e aens 203
Konfabulator Events i ittt e e e 204
Event Classes oottt ittt i i e s 205
DOMEVENt et a et a e, 206
DataEvent. i e e e e 206
TextEvent i i e e e e e 206
MouseEvent e e et 207
KeyboardEvent e 208
DragDropEvent. i s 209
FlashEvent i i i ittt i et e e et e 210
WebEvent. e, 210
Event Reference. i i ettt e 211
Data Events. i i i e e e 211
runcommandinbgcomplete 211
tellwidget . ..o 211
DragDrop Events. i s 212
dragdrop. . oo 212
dragenter 213
dragexit. 213

Flash Eventsot ittt i ittt ettt et et 214
fscommand 214
fsreadystate. 214
Keyboard Events. i e e 215
KeYdOWN . . 215

Y PIESS o 216

YU « ot 216
Miscellaneous Events ittt it i et e 217
contextmenU. 217
dockclosed 218
dockopened 218
firstdisplay.o 219
BaAINTOCUS . 219

IA1E . 220
konsposeactivated. 220
konsposedeactivated. 220

l0ad. . . . 221
[0SETOCUSot 221
preferencescancelled 222
preferenceschanged 222

% KONFABULATOR 4.5 REFERENCE MANUAL 13

Contents

screenchanged 222
1 T 223
timerfired 223
unload. 224
valuechanged 224
Wakefromsleep 225
willchangepreferences. 225
yahoologinchanged. 225
Mouse Events.o i it i i i e et e 226
click. . . 226
MOUSEOWNttt e 227
MOUSEATAE .« . o ot ottt et e e e 227
MOUSEEN Y . . . L 228
MOUSEEXIE . . . oo 228
MOUSEIMOVE . . o ot it et e e e e e et e e e e e e e e e e e e e e e 229
MOUSEUD ettt e et e e e e e e e e 229
mousewheel 230
MuUlticlick. 230
TextEveNtS i it st i e e e e, 231
eXtinpUL. . 231
Web Events. e, 231
webalert 232
WeEbCONfIrm . . o 232
webcreatewindow. 233
webexception 233
weblinkclicked. 233
webpageloadcomplete 234
Webprompt. ... 234
webresourceloadcomplete. 235
webresourcerequested 235
webstatusbarchanged 235
webtitlechanged 236
weburlchanged 236
Event Functions. i i i i e e 236
getGlobalMousePosition()t e 236
System DOMReference it nernnnrna=-.239
@ |V 239
COM.connectObject. 240
COM.createObject 241
COM.disconnectObject. 241
Filesystem. e e 241
filesystem.volumes 242
filesystem.CopY() . . . oo 243

14 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

filesystem.createDirectory(). 243
filesystem.emptyRecycleBin()
filesystem.emptyTrash() 244
filesystem.getDirectoryContents() 244
filesystem.getDisplayName() 244
filesystem.getFilelnfo() 245
filesystem.getMD5()o 245
filesystem.getRecycleBinInfo()
filesystem.getTrashInfo() 246
filesystem.isDirectory() o 246
filesystem.isPathAllowed(). 246
filesystem.itemEXists()o 247
filesystem.move() 247
filesystem.moveToRecycleBin()
filesystem.moveToTrash() 247
filesystem.open().o 248
filesystem.openRecycleBin()
filesystem.openTrash() 248
filesystem.readFile(). o 249
filesystem.reveal() 249
filesystem.remove() 250
filesystem.unzip() 250
filesystem.writeFile()o 251
filesystem.zip() 251
1Yt T 252
screen.availHeight 252
screen.availleft 253
SCrEeN.AVAIlTOP . . ottt 253
screen.availWidth 253
screen.colorDepth 253
screen.height 254
screen.pixelDepth 254
screen.resolution 254
screen.width . ..o 254
1321 =] 1 1 255
system.airport, system.wireless 256
system.airport.available, system.wireless.available. 256
system.airport.info, system.wireless.info 257
system.airport.network, system.wireless.network L 257
system.airport.noise, system.wireless.noise 257
system.airport.powered, system.wireless.powered. 258
system.airport.signal, system.wireless.signal 258
SYSTEM.APPEArANCE o oo 258
system.battery. 259
system.battery[nl.currentCapacity. 259
system.battery[n].isCharging. 259

KONFABULATOR 4.5 REFERENCE MANUAL | 15

Contents

system.battery[n].isPresent 260
system.battery[n]l.maximumQCapacity 260
system.battery[n].name. 260
system.battery[n].powerSourceState. 260
system.battery[n].timeToEmpty. 260
system.battery[n].timeToFullCharge 261
system.battery[n].transportType 261
system.batteryCount. 261
system.clipboard 261
SYS ML CPU . . o 262
system.cpu.activity 262
system.cpu.idle 262
SYSTEM.CPU.NICE. 263
SYStem.CpU.NUMPIOCESSOISo e 263
SYSTEM.CPU.SYS . 263
SYSTEM.CPULUSEY. . . . 264
SysStem.event. 264
SYStEM.IANGUAZES o o 264
SYSTEM.MEMOTY 265
system.memory.availPhysical. 265
system.memory.availVirtual. 265
system.memory.load 265
system.memory.totalPhysical. 266
system.memory.totalVirtual. 266
SYSTEM.MULE . . . 266
system.platform 267

system.userDocumentsFolder,
system.userDesktopFolder,
system.userPicturesFolder,
system.userMoviesFolder,
system.userMusicFolder,
system.userWidgetsFolder,
system.applicationsFolder,
system.temporaryFolder,

system.trashFolder 267
SYStemM.VOlUME . . . 268
system.widgetDataFolder 268

Miscellaneous DOMReference:ceceuesnass==s:269

.. 269
iTunes.playerPosition. 270
iTunes.playerStatus 270
iTunes.random
iTunes.shuffle 270
iTunes.repeatMode 270
ITUNES.FUNNING e e e e 271
iTunes.streamURL 271

16 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

iTunes.trackAlbum e 271
iTunes.trackArtist 271
iTunes.trackLength 272
iTunes.trackRating. 272
iTunes.trackTitle 272
TUNES.ATACKTYPE . « o . oo 272
ITUNES. VIS ON . o ottt e e e e 273
ITUNES.VOIUME. 273
iTunes.backTrack() 273
iTunes.fastForward() 274
iTunes.nextTrack(). 274
ITUNES.PAUSE() . « o ottt e e e e e e e e e e e e e e 274
ITUNES.PlAY() . . . oo 274
iTunes.playPause() 275
ITUNES.TESUME(). .« o v v et e e e e e e e e e 275
iTunes.rewind() 275
ITUNES.STOPO) . . . o o 276
URL Object ... 276
URL.autoRedirect 277
URL.hostname 277
URL.location 277
URL.outputFile 278
URL.password. 278
URL.path. . . 278
URL.pOrt. . 279
URL.postData 279
URL.QUErYStIiNg . . o oo 280
URL.FESPONSE . . oo 280
URL.responseData. 280
URL.result. 281
URL.sCheme 281
URL.timeout e 282
URL.USEIMNaAME. . . oo e e e e e 282
URL.addPostFile() 282
URL.cancel()o 283
URL.clear() 283
URL.fetch()o 284
URL.fetchASync()o 284
URL.getResponseHeaders().ot 285
URL.setRequestHeader() 285
Animation. i e e 286
Animator. e e e e a e 286
animator.ease()o 287
animator.kEaseln, animator.kEaseOut, animator.kEaselnOut, animator.kEaseNone. 287
animator.milliseconds 287

KONFABULATOR 4.5 REFERENCE MANUAL 17

Contents

animator.runUntilDone() 288
animator.start() 288
animation.kill(). o s 289
CustomANIMation()t ittt it it i sttt sttt s e 289
FadeAnimation().t e 290
MoveAnimation() o e e 291
RotateAnimation()c i e e 292
ResizeAnimation()c. ittt it i s ittt st a s 292
Y 1 293
JSON.StNGIfY . o o 293
JSON.parseo 293
Display . ..t e e 294
Display.rect o 294
Display.WOrkRect 294
CSSReferenceiiiivvvnnnnnnnnnnnnnnnnnnnnn=.295
USage ... 295

CSS COl0rS vt 295

Common Styles.o e 296
background. 296
backgroundAttachment. 297
backgroundColor 298
backgroundlmage 298
backgroundPosition. 299
backgroundRepeat 300

COlOr L o 301
fontFamily. ... 301
fONtSizZe. . . o 302
fontStretch . .. 303
fontStyle . . o 304
fontWeight . .. 304
OPACIEY . . oo 305
Lot Al gN . . o 306
textDecoration 306
KonBackgroundFill 307
KonShadow. 308
KonShadowColor 308
KonShadowOffset. 309
KonTextTruncation 310

SQLiteReference v .t verennrnnsnnnnnnnnnnsnss=:311

SQLite Object ... 311
lastinsertROWID o 311
NUMROWSATTected. 312

18 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

(o] o< o 1 312
CloSE) . . o 312
EXEC)« v 313
QUETY () .« o e et e e e 313
SQLiteResUlt. i e et et e 314
NUMCOIUMNS. . . 314
cUIrent() . . . o 314
NEXE() . oo 315
FEWINA() . .o e 315
getAll) L . 316
BEtROW() . . o o 316
getColumN() . .. 316
getColumnName() 317
iSPOSEO) .« v ot 317
SQLItEEIrOrot et e e e 318
errCode. . .. 318
I S g o o 318

Global Functions e ereunransannnnnsnn=s=321

alert() .. 322
appleScript) . . o 322
beep() . . .o 323
bytesTOUISENG()o 323
chooseColor() 323
chooseFile). 324
chooseFolder() 324
convertPathTOHFS() 325
convertPathToPlatform() 325
closeWidget()o 326
BSCAPE() - i i 326
focusWidget()o 326
form) . o 327
getMainDisplay(). . . .o oot 328
8etDISPlays() . . . ot 328
INClUde() . . . 328
isSApplicationRunning() 328
konfabulatorVersion() 329
0B0) © o e 329
OPENURL() . ..t 329
PlaY () o 330
POPUPMENUI) . . o o et e 330
PHNEO) .« . oo 331
PromMPE) . . o 331
FANAOMO) . . 332
reloadWidget()o 332

KONFABULATOR 4.5 REFERENCE MANUAL 19

Contents

resolvePath() o 332
resumelpdates(). 333
ruNCommand()o 333
runCommandIinBg() 333
SAVEAS() . . o 334
savePreferences() 335
showWidgetPreferences() oot 335

SIEEP () . o e 335

SPEAK() . o 335
suppressUpdates(). 336
tellWidget(). . ..o 336
UNESCAPE() .« . v ettt et e e e e 337
UPdateNOW(). . . . o 337
yahooCheckLogin() 337
YahooLOZIN(). . . .o ot 338
yahooLOogOUL() oo 339
XML Servicesccrtuuunsnesnnnnnsssnnnnnsnssnsns341
AbOUt XML SEIVICES . . oot 341
XMLDOM Object . . . oo e et et et e s 341
XMLDOM.createDocument() oo 341
XMLDOM.PArse() oot 341
XMLHttpRequest. s i e 342
XMLHttpRequest.autoRedirect 343
XMLHttpRequest.onreadystatechange 343
XMLHttpRequest.readyState. 344
XMLHttpRequest.responseText. 344
XMLHttpRequest.responseXML 345
XMLHttpRequest.status 345
XMLHttpRequest.statusText 346
XMLHttpRequest.timeout 346
XMLHttpRequest.abort(). o 346
XMLHttpRequest.getAllResponseHeaders(). 347
XMLHttpRequest.getResponseHeader() i 347
XMLHttpRequest.open() 347
XMLHttpRequest.send()ot 348
XMLHttpRequest.setRequestHeader(). 348
XPath Support. o 349

TheConverterTool¢.iccreuennnnnnnnn=s==2«351

Windows OS and Mac OS X Differencesv2:2....353

UNIX Commandso 353
Command Key 354
Key NamEsS . . . 354

20 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Contents

HOL KYS .« o oo e e 354
Paths. . .. 354
Perl and PHP 354
Appendix A:DTDS:vctuesunsnnsnnsnnsnnsn=sss355
Metadata DTD 355
Widget Dock Item DTD.o 356

Acknowledgmentst a..359

% KONFABULATOR 4.5 REFERENCE MANUAL 21

Contents

22 KONFABULATOR 4.5 REFERENCE MANUAL

The Basics

The Yahoo! Widgets Konfabulator (also called “Widget Engine” or “engine"” in this document) uses XML
to define Widgets and the objects that make them up. XML provides a clear hierarchy for what each
object is and the order it's drawn in, and associates the correct attributes with each object. A very simple
Widget might look like this:

<widget minimumVersion="4.0">
<window id="main_window"
title="Sample Yahoo! Widget"
width="500" height="500">
<image id="sunl"
src="Resources/Sun.png"
hOffset="250" vOffset="250"
hAlign="center"/>
<text id="textl"
style="font-size:36px; font-weight: bold"
hOffset="250" vOffset="100"
hAlign="center"
onMouseUp="this.changeOpacity();">
Click Here/>
</window>
<script>
function changeOpacity() {
this.opacity = (this.opacity/100)%*90;
}
</script>
</widget>

This Widget reduces the opacity of an image by 10% every time the user clicks the text that says “Click

Here." Obviously this isn't terribly useful, but we'll use this simplified example to illustrate a few points.

This sample depends on one external file, Resources/Sun.png. If you run it without that file, it displays
a “missing image" placeholder.

First, note the structure of the Widget. XML is a symmetrical language in that each object specifier (e.g.,
<window>) has a corresponding terminator (</window>). Within these pairs, the attributes of the objects
are defined as screen positions, alignments, and so on. Also note that objects defined in XML (like sun1)
can be manipulated in JavaScript (see the onMouseDown handler in the text1 object). IDs of objects must
begin with a letter, and only letters, numbers, and underscores are allowed. The XML for a Widget is
stored in a file with the extension .kon (see “Widget File Structure” and “Widget Packaging"” for a
discussion of the bundle this file lives in).

Real Widgets can have hundreds of images and text objects, multiple JavaScript sections (often in external
files), and usually create new objects at runtime using JavaScript to implement complex functionality.

By far the best and easiest way to get started creating Yahoo! Widgets is to take an existing Widget and
start making changes to it. The Widget Engine comes with a selection of Widgets that perform a variety
of tasks, any of which would be a good place to start—just remember that although the XML and
JavaScript in these Widgets is freely available for reuse, the art assets are not and they must not be
redistributed. Consult any license files inside the Widget for specific licensing requirements.

% KONFABULATOR 4.5 REFERENCE MANUAL 23

The Basics Widget Consolidation

Widget Consolidation

The Widget Engine has a feature that copies any Widget you run into your Widgets folder (My Widgets
on Windows). This feature can cause problems when you are developing Widgets, since they will
disappear from the folder where you are editing them when you run them. To disable this feature, right-
click on the gear icon in the system tray (on Mac, click on the gear icon in the menu bar), choose
“Preferences” and select the "General" tab, then confirm that “Consolidate Widgets" is not checked.

XML Syntax

The preferred syntax to use in our XML is attribute-based. This means that you should specify properties
of objects as XML attributes, and children as elements. For example, an image should be specified as:

<image src="images/image1.png" hOffset="10" vOffset="20" onClick="clickMe(event)" />

You will see some Widgets that use elements to define things like hOffset, etc. This is accepted by the
parser, but considered bad practice, as it slows parsing down. In general, if you use attributes, and use the
CSS styling for objects, there should really never be a need to specify a property as an element.

One other thing to avoid is using the window attribute on images, text, etc. You should instead just be
sure to enclose the objects inside a window element, as such:

<window width="200" height="200">

<image src="Sun.png" hOffset="10" vOffset="10"/>

<text vOffset="40" hOffset="10" style="font-size:14px; font-weight: bold" >This is some text</text>
</window>

We also fully support creating a text object outside of a window element without attaching it to any
window. But if you want an object to be bound to a specific window, put it inside the element for best
practice and improved parsing.

Please note that while you are currently only encouraged to follow this format, it may be required in
future versions of the engine.

JavaScript

Because the XML engine looks for the < and > symbols to mark blocks of XML data, our JavaScript engine
needs to have these symbols replaced with &1t; and > respectively. For example:

<script>
if (x &1t; 5)
displayResults();
</script>

Alternatively, you can put the JavaScript code inside CDATA sections to prevent the XML parser from
looking at them. This is a better solution for larger blocks of code.

<script>
<! [CDATAT
if (x < 5)
displayResults();
11>

</script>

(CDATA sections were introduced in version 2.1 of the engine.)

You can also avoid the XML parser looking at your JavaScript entirely by putting it in a separate . js file
and importing it, either via the src attribute (note that the charset attribute is also mandatory):

24 | KONFABULATOR 4.5 REFERENCE MANUAL #o

The Basics File Paths

<script src="myscripts.js" charset="utf-8" />
Or via the include() statement:
<script>

include('myscripts.js');

// additional code here...
</script>

File Paths

File paths in the engine are always relative to the location of the XML file. That means a file reference
without a directory (e.g., main.js) is looked for in the same directory as the XML file while one with a
directory (e.g., javascript/main.js) is looked for in the specified subdirectory of the directory the XML
file resides in. It is not advised to use absolute paths (ones that begin with a /) since the disk layout of
people's computers can differ quite markedly.

Widget Metadata

To deal with the increased amount of metadata we've been accumulating over time, including the new
Widget dock icon, version 4.0 introduced the concept of a separate file to encapsulate it all: widget.xml.
This file should be placed next to your .kon file. The widget.xml file includes information such as the
Widget's name, author, etc., and it overrides any such information that might be specified in your .kon
file's widget attributes. If you provide a widget.xml file and you still have older attributes in your .kon file,
the debug window issues warnings about this to inform you that this is the case.

While the widget.xm1 file is the preferred way to specify your Widget's metadata in version 4.0 and
later, you should still leave a minimumVersion attribute in your Widget's . kon file. This ensures that if
you run your Widget on a version prior to 4.0, it will fail gracefully, informing the user that your Widget
requires 4.0 or later.

Along with your Widget's metadata, the widget.xm1 file also specifies security settings for your Widget.
In versions prior to 4.0, you would put this information inside your . kon file. The format of the security
element is unchanged, only its location is different. Currently, the security element only controls your
Widget's access to Yahoo! web APIs. In the future, it will help control access to the local machine (files,
networking, etc.).

Here's an example widget.xm1 file:

<?xml version="1.0" encoding="utf-8"7>
<metadata>
<name>Vitality Test</name>
<version>1.0</version>

<jdentifier>com.yahoo.widget.vitalitytest</identifier>
<image usage="dock" src="images/SmallSun.png"/>
<image usage="security"
src="1images/SecuritySun.png"/>
<author name="Edward Voas" organization="Yahoo! Inc."

href="http://www.yahoo.com"/>

<copyright>(c) 2006-2007 Yahoo! Inc.</copyright>

<description>This is a really neat
Widget!</description>

<platform minVersion="4.0" os="macintosh"/>
</metadata>

% KONFABULATOR 4.5 REFERENCE MANUAL 25

The Basics CSS Styles

CSS Styles

The engine supports a small subset of CSS for certain objects. The specific attributes supported by the
engine are listed later in the section “CSS Reference".

Styles are only accessible when your Widget's minimum platform version is set to 4.0 or newer. This
enables styles and adds a style attribute to most objects, and also switches off the 2.0-style behavior of
the style attribute on text and textarea objects.

Currently, we do not support style sheets, but that is inevitable as we move forward. We do support
inheritance of styles (but not the explicit “inherit” keyword). This means you can set the text style of a
frame and have it affect all text objects within it automatically. You can also set the text style of a window
and affect all objects in that window.

Styles can be set in two main ways. First, directly in the XML:

<text data="Hello, world"
id="textl"
style="font-weight: bold; font-family: 'Arial',sans-serif;">

Note the single-quotes around font names; unlike browsers, the engine currently requires these quotes.
However, "sans-serif" is a keyword and does not require quotes. The second way is in JavaScript:

var myTextObject = widget.getElementById("textl");
myTextObject.style.fontSize = "30px";

Note that the JavaScript names of styles vary from their CSS versions, as they do in web browsers:
hyphens are removed, and letters previously preceded by hyphens are capitalized.

Event Handlers

Event handlers are the lifeblood of Widgets. They allow you to define how a Widget behaves, e.g., when
the user interacts with the Widget.

With a minimum version of 4.5 or later:

Event handlers must be functions:

myObj.onMouseDown = function(event)

{

print(event.x, event.y);

}
If you set an event handler as anything other than a function, the behavior is currently undefined.
Handlers specified in XML are compiled into functions. For example:
<image onMouseDown="this.opacity=128;"/>
This gets turned into:

<function(event)

{
This.opacity = 128;
}

26 | KONFABULATOR 4.5 REFERENCE MANUAL #o

The Basics Object Names

Versions prior to 4.5:

In versions prior to 4.5, no event parameter is passed to handler functions. Instead, you must use the
system.event global to access event data. This is error prone in certain cases though, so if you are on 4.5
or later, you should definitely use the parameter that is passed to you.

In versions prior to 3.0, the only way to specify an action was to set the action to some JavaScript text.

Security Note: Although older versions of the engine allowed you to set strings as event handlers, you
should avoid the practice entirely because it's a vehicle for code injection in certain cases. Always use
functions.

Object Names

In the XML description, you can set a name attribute. This defines the global JavaScript object that will be
created and bound to the object the name is a part of. For example:

<window name="mainWindow" .../>

This creates a JS variable at the global scope with the name mainWindow. All names must be unique.

In version 4.0 and newer, you can use a new id attribute instead to identify your objects. An object's ID
should be unique within your entire Widget document. You can assign an id attribute at runtime or
change an object’s ID at any time. You can always find the object by using widget.getDocumentByld(). In
general, IDs are preferred over names for two reasons:

1. They are more flexible. You can change them on the fly.

2. They don't create global variables. Global variables can be bad if you ever need to make things go
away in JavaScript to save memory. For example, if you have a window with 10 items in it, if you
create names for those items, you can set the window reference to null but the window won't be
destroyed because you have globals pointing at the 10 items (which in turn have pointers to the
window). This means you have to track everything and make sure to null out all 10 references, as well
as see the object get garbage collected and the memory get reclaimed.

That said, using a name for something that is permanent and global is still a valid use case. Just be aware
of the trade-offs.

Widget Preferences

A Widget can provide a number of preference objects to allow itself to save out settings. These settings
are saved out in per-user preference storage.

e On the Mac, thisisin ~/Library/Preferences/Konfabulator.
¢ On the PC, this is in HKEY_CURRENT_USER\Software\Yahoo\WidgetEngine.

You can define preferences in the XML:

<preference name="windowlLevel" hidden="true" value="1"/>
<preference name="windowOpacity" hidden="true" value="0.7"/>

And get and set preference objects in JavaScript:

preferences.windowOpacity = "0.9";
print(preferences.windowOpacity);

If your Widget will be saving large amounts of data, consider using the SQLite embedded database
available within the engine.

% KONFABULATOR 4.5 REFERENCE MANUAL 27

The Basics Frames and Subviews

Frames and Subviews

A Frame object allows you to group a set of objects and set properties on that group as a whole. This
group is also sometimes called a subview. Objects inside a frame take hOffset and vOffset values
relative to that frame. If you set the opacity of a frame, the opacity of all the objects within that frame are
set relative to that value, e.g., an object with opacity 0.5 in a frame with opacity 0.5 will have an effective
opacity of 0.25. The visibility of a frame likewise affects the visibility of everything within it.

You can add and remove objects from a Window or a Frame using the DOM-style appendChild() and
removeChild() methods.

Even objects not explicitly inside a Frame object are inside a root-level view, and can be accessed via the
Window object that contains them. A window does not, however, have all the properties of a full frame,
such as scrolling.

You can scroll the contents of frames, to create things like scrolling lists of search results. The engine
provides a standard ScrollBar object that you can attach to a frame to scroll its contents. Binding a
ScrollBar to a Frame automatically enables mouse wheel support. A ScrollBar can have its appearance
customized, either simply by colorizing the standard controls, or by supplying your own images for the
track and thumbs. See ScrollBar for more information.

Support for frames was added in version 3.0 of the engine. DOM support began in version 4.0.

Working with the Widget Dock

Version 4.0 and newer include a Widget management Ul in the form of a Widget dock. This dock can be
used to show either all installed Widgets, or just the Widgets that are running. As a Widget author, you
can control what is displayed in your dock item. You can supply an icon, which is used for the times your
Widget is not running, as well as more dynamic information that might get shown while the Widget is
running.

The dock info area is 75x70 pixels. Your icon should be designed to fit in this area. You do not need to
treat the edges of your icon to fit in with the look of the Widget dock. The dock automatically stylizes
your image to match. See below for more information.

Optionally, you can specify text and graphics to be displayed in that area instead of or in conjunction with
your icon while your Widget is running. For example, if you were writing a mail checker Widget, you
might want to show the number of mail messages waiting. A weather Widget might want to show the
current temperature and other weather statistics.

You specify this information by calling widget.setDockltem(). You pass a well-formed XML document to
that function. XML is a subset of the Widget language. You are allowed to use Frame, Text, and Image
objects only.

Due to performance concerns, always use as large an interval as your Widget can tolerate. The general
rule of thumb is to not call more than every 10-15 seconds. Some Widgets might need more frequent
updates (e.g., a CPU meter), but these should be kept to a minimum. Never call setDockltem() more than
once per second. Due to the amount of work and the number of Widgets that could be running, even
once per second could have a negative impact on overall system performance.

To specify an icon for a Widget, you must include a widget.xm1 file and the appropriate icon element
(see "Widget Metadata"” for more info).

To specify dock info, the easiest thing to do is create a small XML file that lives next to your . kon file. At
runtime, just read that file into a DOM. You can then manipulate the info in the DOM to change the
values of what you want to show. Then pass the DOM document into setDockltem().

Here's an example of a small XML file representing a dock item’s live state (also called vitality):

28 | KONFABULATOR 4.5 REFERENCE MANUAL #o

The Basics Working with the Widget Dock

<?xml version="1.0" encoding="utf-8"?7>
<dock-item version="1.0">
<image id="1img" src="images/background.png"/>
<text id="text"
hAlign="center"
vOffset="20"
style="font-family: 'Trubuchet MS';

font-size:18; font-weight:bold; color:white"/>
</dock-1item>

Here's a small sample Widget that demonstrates how to use this file to periodically set the dock info:

<widget debug="on">

<script>
var words = ["hi", "there", "you", "guys"];
var i = 0;

var doc = XMLDOM.parse(filesystem.readFile("vitality.xm1"));
t = doc.getElementById("text");

function setMyDockInfo()

{
t.setAttribute("data", words[i++]);
if (i > (words.length-1))
i=0;
widget.setDockItem(doc);
}
</script>

<timer interval="10.0" ticking="true">

setMyDockInfo();
</timer>
<action trigger="onlLoad">
setMyDockInfo();
</action>
</widget>

See Appendix Afor the DTD of the dock item XML.

As mentioned above, when you specify your icon, the dock stylizes it automatically. This is also true for

your vitality. You can turn off the stylization for vitality by setting the transparent attribute of the dock-
item element to be true.

% KONFABULATOR 4.5 REFERENCE MANUAL 29

The Basics

In general, you should always let the dock stylize your image for you. When creating your icon or dock
info, you should always treat the area as a 75x70 pixel rectangular area. While the first version of the
dock has rounded corners, other releases might not. The rounded corner effect is part of the stylization. In
essence, the image that you provide to us is masked and then sandwiched between a shadow and a

Working with the Widget Dock

highlight layer. Below is a picture illustrating how stylization works.

]
SO Y

In general, corners might be rounded, or they might not. You should plan your content so that no
important information is jammed into the corners as it might get partially cut off depending on the

current method of stylization.

Highlight
Created by dock

Your vitality

Automatically
clipped to 75x70
with 8 pixel radius
corners

Shadow
Created by dock

Composited
image in Dock

30 | KONFABULATOR 4.5 REFERENCE MANUAL

Publishing Your Widget

Once you've created your working Widget, how do you get it out to the world? Upload it to the Gallery!
Your Widget will be reviewed and approved by a real person, and appear on widgets.yahoo.com, usually
within a week. The Gallery Upload page is here:

http://widgets.yahoo.com/gallery/upload.php

But first, it's a good idea to make sure your Widget is formatted properly for quick approval.

Widget File Structure

Your Widget files should be organized in a folder structure that looks like this:

myWidget.widget
Contents
widget.xml
myWidget.kon
Resources
<any files used by the Widget>

It is important that the folder that contains your Widget have ".widget" in its name, and that it contain a
folder called Contents in which your actual .kon file should be placed. (The Contents folder looks a bit
superfluous, and is a legacy of the way Widget files used to be organized on the Mac. Just accept this and
move on.) You can put any other files or folders anywhere within your Contents folder, but we
recommend organizing them into a Resources folder, as shown.

The widget.xml file is not necessary to run your Widget, but is very strongly recommended. It specifies
information about your Widget such as the name of the Widget, the author, organization, copyright
information, and relative paths to images used by the Widget dock and any security dialogs. See "Widget
Metadata” for more information.

Widget Packaging

Widgets are contained in .widget files, which are simply your .widget folder compressed into a single

file, either as a Zip file or a custom flat-file format created using the Widget Converter tool. The flat-file

format is newer and is the recommended way to create your Widget, as the Zip file solution suffers from
a number of performance problems.

To create a flat-file Widget, download the Widget Converter Widget from the Workshop
(http://widgets.yahoo.com/workshop) and simply drag your .widget folder onto it. It will automatically
output a .widget flat file.

To create a Zip-formatted Widget, simply add your .widget folder to a Zip file using your favorite
compression tool, such as Stufflt on Mac OS X or the “Send to... Compressed folder" right-click option
on Windows XP. The Zip file must have the .widget folder as the top-level item within it, not the Contents
directory.

On Mac OS X, you can also create a .widget file by packaging your files into a bundle, which is a directory
that is treated as a single unit by the operating system. You can control-click one of the default Widgets
and choose the Show Package Contents option to see this structure in use. However, Widgets created in
this way will not work on Windows, so it is no longer recommended.

% KONFABULATOR 4.5 REFERENCE MANUAL 31

Publishing Your Widget Giving Your Widget an Identifier

Important note about using the flat file format

Because your Widget is a flat file, you cannot use items such as DLLs that you might have packaged with
your Widget unless you use a new API (widget.extractFile()) to extract the file out of your flat-file Widget
into a location in the filesystem. However, sound files played through the play() function will work
without any changes.

Giving Your Widget an Identifier

Since version 4.0 of Konfabulator, Widgets should have a widget.xml file (see “Widget Metadata" for
more details). widget.xml includes an <identifier> field. You can use any value for this identifier as long as
it is guaranteed to always be unique (i.e., no two Widgets should have the same value for Identifier). To
be safe, we recommend using a UUID, e.g.,

<identifier>425b0c3e-fd99-11db-8314-0800200c9a66</identifier>
UUIDs can be generated for free by a number of tools, including this one:
http://www.famkruithof.net/uuid/uuidgen

Using a UUID means we will always be able to identify your Widget, even if you change the name or
other metadata. It also means your Widget will automatically update itself! See “Updating Your Widget"
for more information.

Updating Your Widget

After you publish your Widget, you will nearly always spot some bugs that you'd like to fix, or invent
some new features you'd like to include. Great! You can use the Gallery Upload tool to do this without
creating a new Widget every time.

If you use a UUID to identify your Widget (see " Giving Your Widget an Identifier"), users of your Widget
will be notified when you update it by a small icon that appears on your Widget's dock tile. Clicking the
icon will produce a dialog asking the user if they want to update to the new version. If they agree, the
new version is automatically downloaded and installed (neat!).

Digital Signatures

Starting in version 3.1, the engine supports the digital signing of Widget files. This is done with the
converter command-line tool (see “The Converter Tool” for more info) or the Widget Converter utility,
which can be found on the Yahoo! Widgets Workshop page, or in the Widget Gallery at
http://widgets.yahoo.com/gallery.

At a minimum, signing your Widget ensures that the integrity of the Widget is intact from the time it was
signed. The engine will display a security dialog whenever it encounters a Widget for the first time and
displays its signature information (see “Security").

If you sign your Widget with a code-signing certificate issued by VeriSign, we can also verify the
authenticity of the certificate itself. We intend to support more certificate authorities in future releases.

Security Windows

There are two similar types of security windows that might appear in the Widget Engine. The first is a
first-run/modification window. On first run of a Widget that the Widget Engine is not familiar with, a
window appears telling the user they are about to open a new Widget and asking them to OK this. This is
to protect against Widgets that might run without the user's knowledge. Also, if the user allows a Widget

32 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Publishing Your Widget

Security

to run and later on that Widget is modified, the next time the Widget is launched, another window
appears to note this change. Again, the user can confirm or deny the request to launch depending on
whether or not the modification was expected.

If you are actively debugging a Widget, you can turn debug mode on (which is probably a good idea
anyway). This suppresses the first-run/modification windows, so you are not notified every time you
tweak your code and reload the Widget.

The second type of window is a “sandbox" window. Currently, the only sandboxed action is logging in to
a user's Yahoo! account (more actions will be sandboxed in future releases). The first time a Widget
attempts to log in to a user's Yahoo! account, a window appears to alert the user and ask whether the
Widget should be granted permission to use their Yahoo! data. Sandbox windows cannot be disabled.

Security

Version 4.5 introduces a much higher level of security specification to protect users by requiring authors

to narrowly define access.

In this release the security block will contain the following definable elements:

command
http
hotkey

filesystem
com/AppleScript

One thing to note is that the API element is no longer necessary when defining the minimum version of
the widget to 4.5 (see below for more details).

When the widget is first loaded, just like in the last version, a dialog will be displayed explaining to the
user what access levels the widget needs. Anything not expressly allowed will be denied. So for example,
if a Widget doesn't announce it will use the filesystem, then tries to read a file, it will fail.

Security Definition Details

The block must be defined in the widget.xml metadata file:

http

Permitted values: domains (i.e. digg.com), all, none
Purpose: To restrict HTTP requests
Default: none (No Access to any domain)

filesystem

Permitted values: none, sandbox, user, full
none - No filesystem access

sandbox - Widget data directory only

user - User home directory (Platform defined)
full - Anywhere on the system (Platform limited)

Purpose: To restrict filesystem access

Note: SQLite access is considered filesystem acess. To use SQLite, filesystem
must be set to sandbox or greater.

Default: none)

com

Permitted values: duid of the COM object
Optional values: name of the COM object
Purpose: To restrict COM requests
Default: No COM plugins allowed

KONFABULATOR 4.5 REFERENCE MANUAL 33

Publishing Your Widget Security

applescript e Permitted values: true, false
e Purpose: To restrict Applescript execution
e Default: No Applescript execution

command e Permitted values: true, false
e Purpose: To restrict system commands
e Default: No runCommand or runCommandInBg execution

hotkey e Permitted values: yes, no, true, false
e Purpose: To restrict global hotkey setting
e Default: No hotkeys can be set

Example:

<security>
<http name="Digg">digg.com</http>
<filesystem>sandbox</filesystem>
<com name="Custom Date">77F81807-FF09-4080-9726-3944E8682CD3</com>
<applescript>true</applescript>
<command>true</command>
<hotkey>false</hotkey>
</security>

What happened to api?

Because we have expanded our security block to include the http element in version 4.5, the api
definition is no longer necessary. However, if you set the minimumVersion attribute of your widget to less
than 4.5, you are still required to provide the api definition for backwards compatibility.

What about older widgets?

For backwards compatibility, only widgets set to a minimumVersion of 4.5 will use the new security block.
This means that if the minimumVersion is set to less than 4.5, the widget will only be restricted by the api
definition. This also means that the security dialog presented to the user will request a much higher level
of access, which may cause unnecessary concern for the user. It is highly recommended that the
minimumVersion be set to 4.5 for this reason.

Security Violation

If a Widget attempts to perform an action that violates the security permissions granted, the Widget
displays a dialog to the user informing them of the nature of the action (http, filesystem, com, applescript,
command). The dialog has only one button, close widget that terminates the process immediately. The
widget is not directed through the normal close routine, but is immediately killed.

If the widget debug mode is turned on, we don't force the widget to shut down. Instead, the debug
window will show the security exception that caused the failure so you can correct the situation.

34 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Advanced

Migrating From Previous Versions

The minimum platform version of a Widget should be specified by the minimumVersion attribute in the
<widget> tag as well as in the widget.xm1 file so that it can be read by all versions of the engine. Setting
the minimum version allows the engine to inform the user that they need to upgrade their engine if they
attempt to run your Widget in an older version of the engine. More importantly, it specifies the way the
engine should treat certain attributes whose behavior has changed since the earlier versions of the engine.
To get the most correct behavior out of the engine, you should always specify the current
minimumVersion for your Widget.

Version 3.0

If you set your minimum version to 3.0 (which you should if you are taking advantage of features in 3.0),
the following behaviors come into play:

1.

No views are auto-bound to the default window. This used to be the case, but with the advent of
hierarchical views in 3.0, this became problematic. As a result, you must specify the window that an
object belongs to, or use frame.addSubview() to embed an object into a frame. If your interface is
mostly constructed with XML, the simplest thing to do is enclose your
image/text/frame/scrollbar objects inside your window object:

<window ...>
<image src=.../>
<text data=.../>
<frame .../>
<image src=.../>
</frame>
</window>

As you migrate your Widget to 3.0, the most common error you would probably encounter is to see
some of your views not appearing. This is due to this behavioral change. Simply double-check that all
your views are bound to some window or parent frame.

. JavaScript lifetime changes. In prior releases, calling delete on an object or setting it to null would

make the object disappear from the window. In version 3.0, if you wish for an object to be removed,
you must call <object>. removeFromSuperview(). This change makes it easier to code a Widget. In
the past you had to maintain lists of all your objects to ensure they didn't disappear with the window.
With the advent of subviews, the number of objects can become unmanageable quickly. Now you no
longer need to care if you have a reference to an object if you've added it to the window. This means
items that would never change during the course of your Widget never need to be tracked by you.
This makes your code more obvious in many ways so you can concentrate on doing what you do best.

. We no longer blindly replace XML entities in your . kon or . js files when files are loaded. If you want

to ensure that JavaScript code that has < or > in it doesn't trip up the parser, you should use CDATA
sections, as mentioned in "“Entities.”

Rotation changes. If you center an image using hAlign and vATlign and then rotate it, it will rotate
around the center of the image using hOffset and vOffset.

JavaScript code in an XML element is read simply as JavaScript code. Previously, the engine would try
to see if it was a file by trying to read a file with the given path. We now only try to read a file if your
action has the f1ile attribute. If you want to include a file in the element, use include (). This should
improve loading performance as we won't hit the filesystem for every chunk of JavaScript code in your
Widget.

KONFABULATOR 4.5 REFERENCE MANUAL 35

Advanced Migrating From Previous Versions

Version 3.1

On Windows if you set your minimum version to 3.1 or newer, the window. shadow attribute is respected.

Version 4.0

When your Widget's minimum platform version is set to 4.0 or newer:

1.

The zOrder attribute on objects is treated differently. In prior releases, the zOrder of an object was an
ever-increasing number. That is, as new objects were created, each object was given a higher zOrder.
This caused issues when a Widget created many objects during its lifetime if it wanted to try to use
zOrder to forcibly order an object above all other objects. Eventually, new objects would end up
getting a higher zOrder index than the object in question.

To avoid this, we no longer increase the zOrder for each object. All objects now get a default zOrder
of zero. To adjust zOrder among sibling views, use the new functions orderAbove() and orderBelow().
You can still use zOrder to move views above other views, but they act more like layers now. For
example, all zOrder 1 objects are above all zOrder 0 objects.

2. Putting JavaScript code in comments is not supported. Use CDATA as needed.

Rudimentary CSS styling is enabled. As a result, the style attribute of text and objects is repurposed to
be a CSS-style declaration list. Values of bold and italic are no longer supported.

XMLHttpRequest auto-forwards by default (i.e., it handles redirects), and a per-session cookie jar is
enabled for your Widget. You no longer need to handle cookie headers yourself. Redirection can be
disabled using the autoRedirect attribute on the XMLHttpRequest object. Automatic cookie handling
cannot be disabled.

Animations always call the done function if one is given, whether the animation was run
synchronously or asynchronously. Previously, we would only run the done function for asynchronous
animations.

The onMouseMove action now occurs whenever the mouse is moving across an object. The new
onMouseDrag action duplicates the old behavior of onMouseMove, and triggers only when the mouse
button is held down. Now you can properly differentiate between a real drag action and just a move.
The behavior of XMLHttpRequest is more in line with the W3C Working Draft published on June 19,
2006 (http://www.w3.0rg/TR/2006/WD-XMLHttpRequest-20060619/). In general this shouldn't
affect you unless you are trying to set headers, e.g., after calling open(). We now throw
DOMExceptions in that case, as per the draft.

Version 4.5

When your Widget's minimum platform version is set to 4.5 or newer:

¢ All event handlers are required to be functions.
e The hATign property of a text object with the wrap attribute set to false no longer affects the text

alignment. You must use the CSS text-align attribute to change justification inside its box.

36 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Advanced Entities
text-align vs. hAlign width hAlign CSS text-align hOffset
With no width specified, the (n/a) left right IMy Text
Text object's width is the bounds
of the text it contains and CSS (n/a) center left My ITeXt
alignment has no visible effect. (n/a) right center My Text
[
When a width is specified that's 85 left right | My Text
wider than the enclosed text,)
CSS alignment positions the text 85 center right IIV\y Text
[
Depending on the Text object's 85 left center | My Text
width, hAlign and CSS text-align
values, the actual text position = Genfier GemitEr My ITeXt
may not be what you expected. g5 right left My Text

Entities

In XML, some characters such as “<" and “>" are important when parsing the syntax, and so are

considered “reserved” and should not be used anywhere else in the document. In order to represent
these characters in the XML, you need to refer to them by codes. This is known as entity escaping, and

Konfabulator uses a standard set of entities:

& &
" "
' !
&1t; <
> >

In addition to the basic entities, you can refer to any character using its Unicode reference, either as

decimal or hexadecimal, for example:

<space character, decimal>

 <space character, hex>
Ŷ <degree symbol, decimal>
O; <degree symbol, hex>

However, the XML parser does not handle JavaScript. Therefore, if you wish to represent special
characters within JavaScript strings, you need to use the JavaScript syntax to refer to them, for example:

\u0020
\u00BO

Make sure you use the right type of escaping at the right time:

<space character>
<degree symbol>

<widget minimumVersion="4.0">

style="background-color: blue;"

<window
width="140"
height="40">
<text

style="background-color: white;"

hOffset="20"

KONFABULATOR 4.5 REFERENCE MANUAL

37

Advanced Widget Runtime

vOffset="20"
width="100"
height="20"
data="wøø"
id="text"
onclick="getCode() ;">
</text>
</window>
<script>

var getCode = function() {
var text = widget.getElementById('text');
text.data = "y\uOOE5y";
}
</script>
</widget>

There are many tools for finding the Unicode number of a character, such as this one:

http://people.w3.org/rishida/scripts/uniview/descn

Widget Runtime

This section discusses how Widgets are run and some issues to keep in mind.

When a Widget is opened, it is run as a separate process. This is done to prevent one broken Widget from
bringing down all the others.

Zipped Widgets are unzipped into a special location (/tmp on the Mac, and C:\Documents and
Settings\<user>\Local Settings\Application Data on the PC). A Widget that is not zipped is run right from
where it is located. For this reason, the location of your Widget when it is run is not guaranteed.

The working directory of a Widget is the directory in which the .kon file is located (usually Contents). This
allows relative paths to resources to work. Your Widget would reference an image as
Resources/Image1.png, for example, if its images were inside a Resources folder inside Contents.

When your Widget is opened, the .kon file is parsed and all the objects defined within it are created. The
onLoad handler is then called. You should be careful that your onLoad functions do not take overly long
to run, as many Widgets set their visibility to false initially and then make themselves visible at the end of
their onLoad handler.

Each time your Widget is run, the Widget is unzipped again. For this reason you should not store
information in your Widget's working directory. Instead, you should use system.widgetDataFolder.

Any Widget running when the engine is closed will be re-opened the next time the engine is run.

Debugging

To help Widget developers, Konfabulator has a Debug Mode. In this mode, a debug output window
opens when your Widget is started. While developing your Widget, you should always turn debug to on
so you can keep track of errors. For example, if you misspell an attribute, or make a syntax error in your
JavaScript, the output window tells you this, along with where the problem is in your code. Calls to Tog Q)
or print() in your JavaScript code appear in this window. Any errors encountered inside the Widget
Engine are also reported in this window.

38 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Advanced Exceptions

The debug window has a command line. You can enter any valid JavaScript statements to be evaluated
into this (this is often useful for testing the values of variables). You can also enter special debug
commands to trace variables and functions and perform other useful tasks. To see a complete list of these
commands, type "/help" into a debug window.

To activate debug mode, hold down Control and Shift and right-click on the Gear icon in the system tray
(on Windows) or the menu bar (on Mac). An additional option to activate debug mode will appear in the
menu. You will need to close and re-open any Widgets that are already running if you want to put them
into debug mode. You can also activate debug mode on a per-Widget basis by putting a <debug> tag
with a value of "on" inside your <settings> block (see “Settings" for more information). Debugging is
the same no matter how it is activated, and it is usually easier to use engine-wide debugging.

Exceptions

When things go awry, the engine will sometimes give you a chance to recover from the error before
informing the user, behavior known as throwing an exception. This is useful in the COM interfaces for
Windows, and the filesystem object. Here is an example of how to use exceptions, from the Day Planner
Widget:

try

{
outlook = COM.createObject("Outlook.Application™);
// work with Outlook object here...

}

catch(e)

{
print("Unable to connect to Outlook: " + e);

}

Exceptions are real JS objects, but when printed, they'll automatically display a string representation in
version 4.5 and newer. Prior to version 4.5, exceptions were merely strings. Handling exceptions is
essential when dealing with COM interfaces of any kind.

XML Services

In version 3.0 and newer, we provide services to allow you to work with XML more easily. In 3.0 we now
have a built-in XML parser that is significantly faster than using the external JavaScript-based xm1dom. js
file. This XML parser always operates in “strict” mode.

The output of the parser is a Level 1 W3C DOM and we follow the specification for that DOM. There are
a few omissions (entities, for one), but the important core is there. You can also create and edit these
DOM trees to make your own XML documents and output them.

The DOM APl is nice, but in general it's not convenient to traverse an XML tree to find the important bits.
So we've also added XPath 1.0 support (minus namespace-specific functions). This makes it much easier
to pull out pieces of a XML tree instead of using the DOM API.

To aid in moving code into Yahoo! Widgets, we also support the XMLHttpRequest object. For POSTing
files, we still recommend you use the URL object.

Yahoo! Login Support

Version 3.0 and newer allow you to use APIs that require a Yahoo! login. The engine itself takes care of

the details of logging in and storing credentials. Your Widget only has to check the current login state or
request to log in. When logged in, when sending the API request to the server, the engine automatically
adds the user's credentials for you.

% KONFABULATOR 4.5 REFERENCE MANUAL 39

Advanced Localized Widgets

Important: In version 3.1 and newer, you must specify the specific Yahoo! APIs your Widget wants to
connect to in a <security> block (see the section on the security block in the XML reference for more
info). This list of APIs will be confirmed by the user before your Widget is allowed to access them with
Yahoo! credentials, and only those APIs will receive the Yahoo! credentials. If you were using
yahooLogin() before 3.1, your Widget will no longer be able to access those APIs until it is modified to
included the security block.

To behave like a good citizen, you should first check to see whether you are logged in by calling
yahooCheckLogin(). If this returns true, you are all set to access the Yahoo! API your Widget would call.
If it returns false, you should display a placard or some other indication that your Widget cannot display
its information because the user is not currently logged in and give them a button/link/something to click
to enable them to log in from your Widget.

In your onLoad handler, for example:

if (yahooCheckLogin())

loggedIn(); // display your UI in the logged in state.
else

ToggedOut(); // display your UI in the logged out state.

It is considered bad form to blindly call yahooLogin() in your onLoad handler.

When the user clicks your button to log in, call yahooLogin(). If this function returns true, you are
already logged in. If it returns false, the user must authenticate. When yahooLogin() returns false, your
Widget should wait for an onYahooLoginChanged event to come to your Widget (i.e., the function
behaves asynchronously). This means your code for a logged-in state should always be in a function
triggered by an onYahooLoginChanged event. This pattern is useful, since the user logging in or out via
the Gear menu can also trigger the onYahooLoginChanged event.

When your onYahooLoginChanged handler is called, you must call yahooCheckLogin() to see what
your new state is (this call also loads information such as necessary cookies). Based on the state returned,
you would either behave logged in or out, just as shown above for onLoad.

Be warned that even if yahooCheckLogin() returns true, your request to the API server might fail due to
expired credentials (this can happen after a prolonged period of inactivity). In this case, it is good Widget
behavior to call yahooLogout () so that other Widgets are aware of the situation.

<action trigger="onYahoolLoginChanged">
<! [CDATAL
if(yahooCheckLogin()) {
// your Tlogged-in code here...
} else {
yahoolLogout();
// your logged-out code here...
}
11>

</action>

Localized Widgets

If your Widget is going to be used across the world, you can create a single Widget that can be viewed in
multiple languages. To do this, replace all the text strings in your Widget with calls to the localized string
function, for example:

widget.getlLocalizedString("save_as_button");

40 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Advanced Localized Widgets

The engine will look up the “translation” for this string in the most specific language file it can find.
Language files should be named Localizable.strings, and are written in a keyed string file format. For
example:

"save_as_button" = "Save As";

The key value (the one you send to getLocalizedString) is on the left, and the translated value is on the
right. Both sides must be in quotes, and each mapping must end with a semicolon.

The engine expects to find these files in a series of directories within the Resources folder of your Widget.
The directory you put these files in must be named using the I1SO 639-1 language code and optionally the
ISO 3166 locale code. For example:

English language, all locales:
Resources/en/Localizable.strings
English language, U.S. locale:
Resources/en_US/Localizable.strings

To find the correct strings file, the engine searches for <lang>_<locale> first, then simply <lang>. If it can't
find either, it loads “en" by default. The language/locale we use is defined by the Language setting in the
engine's Preferences dialog. This language setting affects only Widgets that are run after the setting has
been made. One of the settings is the system default, i.e., whatever language your OS is running.

See also locale.

Keep in mind that your Widget needs to deal with strings that might be longer than what the Widget was
designed for. For example, German strings are typically much longer than their English equivalents.

A list of ISO 639-1 (and 2) codes can be found here:
http://www.loc.gov/standards/is0639-2/php/code_1list.php
A list of ISO 3166 codes can be found here:

http://www.iso.org/iso/country_codes/iso-3166-code-1ists/
english_country_names_and_code_elements.htm

% KONFABULATOR 4.5 REFERENCE MANUAL 41

http://www.iso.org/iso/country_codes/iso-3166-code-lists/english_country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso-3166-code-lists/english_country_names_and_code_elements.htm
http://www.loc.gov/standards/iso639-2/php/code_list.php

Advanced Localized Widgets

42 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference

The following sections describe the objects and attributes that make up Widgets. Objects are organized
into a hierarchy as follows:

<widget>
<about-box/>
<action/>
<hotkey/>
<preference/>
<security/>
<script/>
<window>
<canvas/>
<image/>
<text/>
<frame/>
<textarea/>
<scrollbar/>
<script/>
</window>
</widget>

Other blocks are read as subblocks:

<menultem/>
<shadow/>

Objects must be inside a window object (this was not the case in previous versions). This means you can
put objects like images, text, and text areas into the block for the window:

<window>

<image name="foo0"/>
<text .../>
</window>

Using this format, you do not need to include the window attribute for any of the nested images since the
window is known to be the containing window specified in the XML. If you do specify a window, you will
get an error in the debug window warning you of this fact.

Important: In version 3.0 and newer, it is a requirement to put your objects inside the window
declaration, otherwise they are not visible.

The DOM

the Document Object Model

In version 4.5 and later, there is a full W3C DOM in place. Whereas objects such as Window and Image
existed in the XML, there was no way to access those at runtime unless you provided name attributes for
them. The DOM allows you to get at any aspect of your original XML document from Javascript, with a
few minor exceptions.

Like any HTML document, you can access anything in your Widget via the document object. Typically,
you'd use document.getElementByld() to look up an element and return a reference to it. Since there's a
real DOM behind everything, you can also use Konfabulator's XPath facility to do batch lookups. For

% KONFABULATOR 4.5 REFERENCE MANUAL 43

Core DOM Reference: XML DOM API DOMException

example, you might want all image tags from a particular window. You can use an XPath expression such
as window.evaluate('image') to fetch them all. You can also use the simpler
getElementsByTagName()API to do simple fetches of descendants with specific names.

Having the DOM allows you to do things you never could before. For example, you could change your
about-box object at runtime before it's displayed. Or you can now change context menu items of an
object just by using the standard DOM APIs. Another highly useful thing you can do with the DOM is to
adjust your preferences on the fly. For example, you can dynamically build your option children of a
preferences item before preferences are shown.

XML DOM API

This section lists the various objects and methods/attributes currently supported by the Widget Engine's
Level 1 W3C DOM implementation. We currently provide a large subset of the full API. The current
parser does not yet deal with DTDs, so it does not do things such as fill in attributes with default values
automatically.

The following is a brief overview of the attributes and functions we support. For more information, we
suggest you visit the w3c.org web site.

DOMException

standard exception class for the DOM

When an exceptional situation arises, a DOMException is thrown as a JavaScript exception. You can
inspect the object's code attribute to see what happened. Level 1 exception codes are:

INDEX_SIZE_ERR
DOMSTRING_SIZE_ERR
HIERARCHY_REQUEST_ERR
WRONG_DOCUMENT_ERR
INVALID_CHARACTER_ERR
NO_DATA_ALLOWED_ERR
NO_MODIFICATION_ALLOWED_ERR
NOT_FOUND_ERR
NOT_SUPPORTED_ERR
IN_USE_ATTRIBUTE_ERR

O oONOOUVTA WN R

=
o

DOMDocument

represents an entire XML document

Attributes

doctype The document type definition for the document.

documentElement The root element of the document.

Functions
DOMElement createETement(string tagName);
Creates a new element node for the document with the given tag name. You must attach it to the
document as appropriate using appendChild.
DOMText createTextNode(string data);
Creates a new text node for the document with the given content.

44 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: XML DOM API DOMNode

DOMComment createComment(string data);
Creates a new comment node with the given content.

DOMCDATASection createCDATASection(string data);
Creates a new CDATA section with the given data.

DOMProcessingInstruction
createProcessingInstruction(string target, string data);

Creates a new processing instruction with the given target and data.

DOMAttribute createAttribute(string name);
Creates a new attribute node with the given name.

DOMNodeList getElementsByName(string name);
Returns a list of all elements in the document with the specified name.

DOMNode importNode (DOMNode node, boolean deep);
Imports a node from some other document into this one. Available in version 3.1 or newer.

DOMNode

base class for items in an XML tree

DOMNode is the base class for pretty much everything you'll deal with in the DOM API. You'll never
encounter a DOMNode in everyday life, but its interface is something that is common to all node types
(text, element, CDATA, etc.) and as such is documented once here rather than separately for each

subclass
Attributes
nodeName The name of this node.
nodeType The node type, expressed as an integer.
parentNode The parent of this node (can be null).
childNodes A DOMNodeL i st of children.
firstChild The first child node of this node.
TastChild The last child node of this node.
previousSibling |The previous sibling node of the current node.
nextSibling The next sibling node of the current node.
attributes A DOMNamedNodeMap of this node's attributes (only valid for ETement
nodes, null otherwise).
ownerDocument The DOMDocument that this node belongs to.
Functions

DOMNode insertBefore(DOMNode newChild, DOMNode refChild);
Inserts newCh1i1d before refChi1d in this node's children.

DOMNode replaceChild(DOMNode newChild, DOMNode oldChild);
Replaces o1dChi1d with newChild.

DOMNode removeChild(DOMNode o1dChild);
Removes 01dChi1d from this node's children and returns it.

% KONFABULATOR 4.5 REFERENCE MANUAL 45

Core DOM Reference: XML DOM API DOMNodelList

DOMNode appendChild(DOMNode newChild);
Adds the given child node (if this node type allows children).

boolean hasChildNodes();
Returns true if this node has child nodes.

DOMNode cloneNode(boolean deep);
Clones this node. If deep is true, clones all descendents as well.

DOMNode importNode (DOMNode inNode, boolean deep);

Clones the given node from its world and adds it into our document. If deep is true, clones all
descendents as well. We currently do not do any sort of validation that the node type is valid per
any DTD.

<various> evaluate(string xpath-expression);

This is an extension defined by the Widget Engine that lets you interface with the engine's XPath
support. Using the current node as the context for the XPath expression, you can execute almost
any XPath 1.0 expression that you can dream up (except for some namespace-specific functions).
The result could be a string, number, or a set of nodes. The Widget Engine returns node sets as
DOMNodeLists. See the section on XPath Support for more information.

string toXMLQ);

Widget Engine DOMNode extension. Converts the subtree starting at this node into XML for output
for either writing to a file, or possibly for debugging purposes.

DOMNodelist

simple list of nodes

In keeping with W3C ways, any list of nodes as expressed through the DOM API is represented as a
DOMNodeList, not as a JavaScript array.

Attributes

Attribute Description

Tength The number of items in the list.
Functions

DOMNode 1item(n)
Returns the nth item in the list. DOMNodeLists are zero-based.

DOMNamedNodeMap

map of nodes that is accessible by name or index

When attribute nodes are returned through the attributes attribute of the DOMETement node, they are
returned in a named node map. This map is primarily accessible by name, but you can also traverse it
through an index like a DOMNodeL1ist. The order of the attributes is not guaranteed and should never be

relied upon.
Attributes
Attribute Description
Tength The number of items in the list.

46 | KONFABULATOR 4.5 REFERENCE MANUAL ﬁ'ﬁ

Core DOM Reference: XML DOM API DOMCharacterData

Functions
DOMNode getNamedItem(string name);
Returns the item with the given name, or null if the item is not found.

DOMNode setNamedItem(string node);
Adds the given node to the map. If a node with the given name exists, it is replaced and the old
node is returned. If a node with the given name does not exist, null is returned.

DOMNode removeNamedItem(string name);
Removes the item with the given name, if it exists.

DOMNode item(int n);
Returns the nth item in the list. DOMNodeLists are zero-based.

DOMCharacterData

base class for text and comment nodes
This class, like DOMNode, is something that you'll never encounter in real life, but its interface is available
for both DOMText and DOMComment nodes. As with DOMNode, the interface is shown here once and not
repeated in both of those classes.

Attributes
data The actual character data.
length The length of the character data.
Functions

string substringData(int offset, int count);
Returns a substring of the data as a string. It returns count characters of the data starting at
offset.

void appendData(string data);
Appends the given text to the node's data.

void insertData(int offset, string data);
Inserts the given string at the specified offset.

void deleteData(int offset, int count);
Erases count characters of data starting at offset.

void replaceData(int offset, int count, string data);
Replaces the sequence of count characters starting at of fset with string.

% KONFABULATOR 4.5 REFERENCE MANUAL 47

Core DOM Reference: XML DOM API DOMAttribute

DOMALttribute
attribute node for an element
Attributes
Attribute Description
name The name of the attribute.
value The value of the attribute. Character and entity references are resolved
before returning this value.
DOMElement
element node
Attributes
Attribute Description
tagName The tag name of the element.
Functions

string getAttribute(string name);
Returns the value of the attribute specified, or an empty string if that attribute does not exist.

setAttribute(string name, string value);
Adds the given attribute and its value to the element, replacing any attribute of the same name
that might already exist.

removeAttribute(string name);
Removes the attribute with the specified name, if present.

DOMAttribute getAttributeNode(string name);
Returns the attribute node corresponding to the name passed in, or null if the attribute does not
exist.

DOMAttribute setAttributeNode(DOMAttributes attr);

Adds the given attribute to the element, replacing any attribute that might exist with the same
name. If the node replaces an existing node, the old node is returned as the result, else null is
returned.

DOMAttribute removeAttributeNode(DOMAttribute attr);
Removes the node specified from the element’s attributes and returns it.

DOMNodeList getElementsByTagName(string name);
Returns a list of all elements with the specified tag name that are a descendant of this node.

void normalize();

If there are contiguous DOMText nodes in the subtree starting with the current element, this
function combines them into a single element.

DOMText

text element

Functions
DOMText splitText(int offset);

48 | KONFABULATOR 4.5 REFERENCE MANUAL ﬁ'ﬁ

Core DOM Reference: XML DOM API DOMComment

Splits the given node into two and adds the new node as its new sibling following it in the tree.
This node contains the text up until offset. The following node contains the remainder of the
text. The new text node is returned.

DOMComment

comment node

This node has the attributes and functions of the DOMCharacterData interface.

DOMCDATASection
CDATA section

This node has the attributes and functions of the DOMCharacterData interface.

DOMDocumentType

document type node

Currently, this node only defines the name attribute. Entities and notations are not supported by the
current version of the Widget Engine.

Attributes

Attribute Description

name The name of the document'’s root object. For a Widget, this would be
“widget." For HTML it would be “html."

DOMNotation

notation node

Currently unsupported.

DOMEntity

node representing an entity

Currently unsupported.

DOMEntityReference

node representing an entity reference

Currently unsupported.

DOMProcessinglnstruction

node representing a processing instruction

Attributes
Attribute Description
target The target of the processing instruction.
data The content of the processing instruction. This is from the first non-
whitespace character after the target to the character immediately preceding
the “?>".

% KONFABULATOR 4.5 REFERENCE MANUAL 49

Core DOM Reference: Common Attributes and Functions DOMProcessinglnstruction

Common Attributes and Functions

things that are common to many different objects

This section lists the attributes and functions that are common to many of the objects that follow. For
example, several different objects can have onMouseUp handlers, context menus, etc.

Attributes

contextMenultems
hATign
height
hOffset

id
firstChild
TastChild
name
nextSibling
previousSibTing
onClick
onContextMenu
onDragDrop
onDragEnter
onDragExit
onMouseDown
onMouseDrag
onMouseEnter
onMouseExit
onMouseMove
onMouseUp
onMouseWheel
onMuTtiClick
opacity
parentNode
style
subviews
superview
tooltip
tracking
vAlign
visible
vOffset
width

window
zOrder

Functions

addSubview()
appendChild()
convertPointFromParent()
convertPointFromwWindow()
convertPointToParent()
convertPointToWindow()
getElementById()
orderAbove()
orderBelow()
removeChild()
removeFromParentNode ()

50 | KONFABULATOR 4.5 REFERENCE MANUAL #lo

Core DOM Reference: Common Attributes and Functions contextMenultems

removeFromSuperview()
saveImageToFile()

contextMenultems

array of context menu items

Usage
JavaScript, XML

Description

You can add items to the standard context menu that appears when the user right-clicks the mouse
button on your frame. You can also dynamically build your context items by responding to the
contextmenu event (see onContextMenu for more information).

You specify your items by including an array of menuItem objects. See the Menultem section for more

information about menu items.

Applies To
Canvas, Flash, Frame, Image, Text, TextArea, Web, and Window objects.

Example


See the onContextMenu section for an example of building a context menu in JavaScript.
Availability

Available in version 2.0 or newer.

hAlign

horizontal alignment of an object

Usage
JavaScript, XML

Values
left
right
center

Description

The hAT1ign attribute of an object defines the initial horizontal alignment with respect to its hOffset
attribute. For example, an object with right alignment is drawn so that its right edge appears at the
hOffset. The default alignment is Teft.

% KONFABULATOR 4.5 REFERENCE MANUAL

51

Core DOM Reference: Common Attributes and Functions height

Applies To

Canvas, Frame, Image, Text, TextArea, and Scrol1Bar objects.

Example
<frame hAlign="right"/>

myFrame.hAlign = "Teft";
Availability

Available in version 3.0 or newer.

height
height of the object

Usage
JavaScript, XML

Description

The height attribute controls the vertical dimension of an object. If no height is specified for a frame, its
height is determined automatically by the extent of its subviews.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
<frame height="300"/>

myFrame.height = 300;
Availability

Available in version 1.0 or newer.

hOffset

horizontal offset of an object

Usage
JavaScript, XML

Description

The hOffset attribute of an object defines the horizontal (left to right) offset for the image based on 0,0
being the upper-left corner of the its parent view (superview). The greater the value assigned, the farther
to the right the object appears.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
<frame hOffset="30"/>

frame.hOffset = 30;

52 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions id

Availability

Available in version 1.0 or newer.

id

unique identifier of an object

Usage
JavaScript, XML

Description

The id attribute of an object allows you to identify an object uniquely across the entire Widget. This can
be used to later find the element using getElementById. In the future, it will tie into CSS styling as well.

Applies To

Canvas, Flash, Frame, HotKey, Image, Preference, Text, TextArea, Timer, Scrol1Bar, Web, and
Window objects.

Example
<frame id="wicked"/>

frame.id = "wicked";
f = widget.getElementById("wicked");

Availability

Available in version 4.0 or newer.

firstChild
first child object

Usage

JavaScript (read-only)

Description

The firstChild attribute returns the first subobject of a given object, or null if the object has no
children. This is useful for walking the DOM hierarchy of a window.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
child = window.firstChild;

while (child != null)

{
processChild(child);
child = child.nextSibling;

% KONFABULATOR 4.5 REFERENCE MANUAL 53

Core DOM Reference: Common Attributes and Functions lastChild

Availability

Available in version 4.0 or newer.

lastChild

last child object

Usage
JavaScript (read-only)

Description

The 1astChild attribute returns the last subobject of a given object, or null if the object has no children.
This is useful for walking the DOM hierarchy of a window.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example

// walk backwards...
child = window.TastChild;

while (child != null)

{
processChild(child);
child = child.previousSibling;
}
Availability

Available in version 4.0 or newer.

name

JavaScript name for an object
Usage
JavaScript (read-only), XML

Description

The name attribute is a read-only attribute specified in XML. If the name attribute of an object is
specified, a JavaScript global variable with that name is created, allowing you to access that object.

Its use in JavaScript is deprecated in favor of using the id attribute.

Applies To

Canvas, Flash, Frame, HotKey, Image, Preference, Text, TextArea, Timer, Scrol1Bar, Web, and
Window objects.

Example
<frame name="wicked"/>

wicked.1ineSize = 10;

54 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions nextSibling

Availability

Available in version 4.0 or newer.

nextSibling

object immediately after a selected one in the DOM tree
Usage
JavaScript (read-only)

The nextSib11ing attribute returns the next object after a selected object in the DOM tree, or null if the
object has no sibling following it. This is useful for walking the DOM hierarchy of a window.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
child = window.firstChild;

while (child != null)

{
processChild(child);
child = child.nextSibling;
}
Availability

Available in version 4.0 or newer.

previousSibling

object immediately before a selected one in the DOM tree

Usage

JavaScript (read-only)

Description

The previous attribute returns the object immediately preceding a selected object in the DOM tree, or
null if the object has no sibling before it. This is useful for walking the DOM hierarchy of a window.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example

// walk backwards...
child = window.TastChild;

while (child != null)
{
processChild(child);
child = child.previousSibling;

% KONFABULATOR 4.5 REFERENCE MANUAL 55

Core DOM Reference: Common Attributes and Functions

Availability

Available in version 4.0 or newer.

onClick

onClick

installs handler for click event

For More Information

See click.

onContextMenu

installs handler for contextmenu event

For More Information

See contextmenu.

onDragDrop

installs handler for dragdrop event

For More Information
See dragdrop.

onDragEnter

installs handler for dragenter event

For More Information

See dragenter.

onDragExit

installs handler for dragexit event

For More Information

See dragexit.

onMouseDown

installs handler for mousedown event

For More Information

See mousedown.

onMouseDrag

installs handler for mousedrag event

For More Information

See mousedrag.

56 | KONFABULATOR 4.5 REFERENCE MANUAL

Core DOM Reference: Common Attributes and Functions onMouseEnter

onMouseEnter

installs handler for mouseenter event

For More Information

See mouseenter.

onMouseExit

installs handler for mouseexit event

For More Information

See mouseexit.

onMouseMove

installs handler for mousemove event

For More Information

See mousemove.

onMouseUp

installs handler for mouseup event

For More Information

See mouseup.

onMouseWheel

installs handler for mousewheel event
For More Information

See mousewheel.

onMultiClick

installs handler for multiclick event

For More Information

See multiclick.

onTextlnput

installs handler for textinput event

For More Information

See textinput.

% KONFABULATOR 4.5 REFERENCE MANUAL 57

Core DOM Reference: Common Attributes and Functions opacity

opacity

opacity of an object

Usage
JavaScript, XML

Description

The opaci ty attribute allows you to specify a value from 0 to 255 that controls the alpha value with
which the object is rendered. An opacity of 0 is completely transparent (invisible) and has such side
effects as preventing the object from reacting to mouse events. A value of 255 renders the image at its
natural opacity. So if your image is already semi-transparent, leave transparency at 255 and it will appear
correctly.

You can also use the CSS opacity attribute via the style attribute. Note that CSS opacity takes a value
from 0 to 1 instead.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
<image opacity=128"/>

myImage.opacity = 128;
Availability

Available in version 1.0 or newer.

parentNode

parent node of an object in the DOM tree
Usage
JavaScript (read-only)

Description

The parentNode attribute returns the parent of any node in the DOM tree, or null if the object has no
parent. Objects at the root level of a Window return the Window object, for example. Note that this is
different than the result of the value of the superview attribute (see superview).

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
parent = object.parentNode;

Availability

Available in version 4.0 or newer.

58 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions rotation

rotation

degrees clockwise to rotate object

Usage
JavaScript, XML

Description

The rotation attribute of the object defines by what degree, or fraction of a degree, the object is rotated.

Applies To

Canvas, Flash, Frame, Image, Text, Scrol1Bar, Web, and Web objects

Example
<frame name="framel" rotation="180"/>

framel.rotation = 180;

style
CSS style information for an object in the DOM tree

Usage
JavaScript, XML

Description

The styTle attribute allows you to alter the CSS style attributes for an object. See the CSS Reference for
the various attributes you can control through using the style attribute.

When using XML, you can supply multiple attributes using a semicolon-separated list of declarations, just
like in HTML.

See the “CSS Reference” for the various properties you can control using this attribute.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

Example
<frame name="myFrame" style="background-image:url1(Sun.png)"/>

myFrame.style.backgroundImage="url1(Sun.png)";

Availability

Available in version 4.0 or newer.

subviews

child views of an object

Deprecation Notice

Instead of this attribute, you should use the firstChild and nextSib1ing attributes to walk the
children of an object. It is far more efficient, and more DOM-centric.

% KONFABULATOR 4.5 REFERENCE MANUAL 59

Core DOM Reference: Common Attributes and Functions superview

Usage
JavaScript (deprecated, read-only)

Description

The subviews attribute returns an array of all subviews. In version 4.0 and newer, it is better to walk
child objects with firstChild and so on. Also, be warned that since this array is built only when needed,
if you change the children of a frame and then access this array while in a loop, the performance can be
very seriously compromised (N squared, for the geeks out there).

Applies To

Frame objects.

Example
subs = myFrame.subviews;

Availability

Available in version 3.0 or newer.

superview

parent views of an object

Deprecation Notice

Instead of this attribute, you should use the parentNode attribute to walk upwards in the DOM tree. It is
more DOM-centric.

Usage
JavaScript (deprecated, read-only)

Description

The subviews attribute returns the parent view of an object. The ultimate parent of all views is the root
view of a window, accessed through window. root.

You should instead use parentNode as of 4.0 and newer.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

Example
dad = myFrame.superview;

Availability

Available in version 3.0 or newer.

tooltip

tooltip for an object

Usage
JavaScript, XML

60 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions tracking

Description

The tooltip attribute defines the text displayed in a pop-up tooltip window when the mouse cursor
rests over an object.

Applies To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

JavaScript
object.tooltip

Example
<image name="myImage" src="Example.png"
tooltip="Example tooltip"/>

myImage.tooltip = "Example tooltip";
Availability

Available in version 3.0 or newer.

tracking

controls the hit clickable area of an object

Usage
JavaScript, XML

Description

The tracking attribute specifies whether an object's opacity should be used to determine the clickable
portions of the image rather than the bounding rectangle. By default transparent parts of an image are
not clickable. This can be changed by setting the tracking attribute to rectangle, which makes the entire
object's bounds respond to mouse clicks.

Applies To

Canvas and Image objects.

Example
<image name="1imgl" tracking="rectangle"/>

imgl.tracking="rectangle";
See Also

Settings

vAlign

vertical alignment of an object

Usage
JavaScript, XML

Values
top

% KONFABULATOR 4.5 REFERENCE MANUAL 61

Core DOM Reference: Common Attributes and Functions visible

bottom
center

Description

The vATign attribute of an object defines how it is positioned vertically relative to its vOffset. For
example, an image with a bottom alignment is drawn so that its bottom edge appears at the vOffset. If
this tag is not specified, the default value is top.

Applies To

Canvas, Flash, Frame, Image, TextArea, Scrol1Bar, and Web objects.

JavaScript
myObjectName.vAlign

Example
<frame name = “myFrame” vAlign = “bottom”/>
myFrame.vAlign = "bottom";

Availability

Available in version 3.0 or newer.

visible

visibility of an object
Usage
JavaScript, XML

Description

You can set the visibTle attribute of an object to show or hide it by setting it to true or false,
respectively. This allows you to hide objects without affecting their opacity, or having to track the current
opacity to restore it later. The default visibility for any object if not specified is true.

Setting visibility on a window object will cause the window to fade in or out smoothly. Other objects will
simply appear or disappear. To fade in and out other objects, use FadeAnimation.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

JavaScript
myObjectName.visible

Example
<frame name="myFrame" visible="false"/>

myFrame.visible = true;

Availability

Available in version 3.0 or newer.

62 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions vOffset

vOffset

vertical offset of an object

Usage
JavaScript, XML

Description

The vOffset attribute defines the vertical (top to bottom) offset for the object based on 0, 0 being the
upper-left corner of the object's parent view (superview). The greater the value assigned, the farther
down the object appears.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

JavaScript
object.vOffset

Example
<frame name="myFrame" vOffset="20"/>

myFrame.vOffset=20;
Availability

Available in version 1.0 or newer.

width

width of an object

Usage
JavaScript, XML

Description

The width attribute controls the horizontal size of an object. If no width is specified, the width is the ideal
width of the object (e.g., the original size of an image, the full width of a piece of text). If the object is a
frame and no width is specified, the horizontal extent of its subviews determines its size.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, Web, and Window objects.

JavaScript
myObjectName.width

Example
<image name="myImage" width="300"/>

myImage.width = 300;

Availability

Available in version 1.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 63

Core DOM Reference: Common Attributes and Functions window

window

window to which this object belongs

Deprecation Notice

This attribute is deprecated as a setter and you should instead use APIs such as appendChild to add an
object to a window. In XML, you should simply enclose your object in an appropriate window element.

Usage
JavaScript, XML
Description

You can specify the window an object belongs to by specifying its name in the XML or its variable in
JavaScript. If you do not specify a window, the object will remain invisible until you do. In XML, you do
not have to specify the window if your object's tag is already inside a window tag.

This is useful for creating customized buttons that respond visually to a user's click.

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

JavaScript
myObjectName.window

Example

<window name="fred" width="100" height="100"/>
<frame window="fred"/>

// Or in code
var myWind = new Window();
myFrame.window = myWind;
// You can also specify it in the constructor
var myFrame = new Frame(myWind);
Availability

Available in version 2.0 or newer.

zOrder

stacking order of an object

Usage
JavaScript, XML (deprecated)

Description

The zOrder attribute defines the stacking order of an object. Objects with a higher zOrder are drawn on
top of those with a lesser zOrder. Normally the zOrder is determined by the order in which objects are

defined in the XML file with earlier objects being drawn under later ones, but it can also be manipulated
using JavaScript at runtime.

64 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions addSubview()

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

JavaScript
myObjectName.zO0rder

Example
<frame name="myFrame" zOrder="10"/>

myFrame.zOrder = customZOrder++;

Notes

This attribute behaves differently if your Widget's minimumVersion attribute is set to 4.0 or higher. To
adjust z-order in that situation, use orderAbove() and orderBelow(). Also, see the section regarding
minimumVersion for more information on how z-ordering now behaves.

Availability

Available in version 1.0 or newer.

addSubview()

adds a view to a frame as a subview

Synopsis
void Frame.addSubview(object);

Applies To

Frame objects.

Description

This function adds an object to a frame. Currently Canvas, Image, Text, TextArea, Frame, and
Scro11Bar objects can be added to a frame object as a child.

In 4.0 or newer, you should use the more generic appendChild() function.

Example
myFrame.addSubview(myImage);

Availability

Available in version 3.0 or newer.

appendChild()
adds a child object

Synopsis
DOMNode object.appendChild(DOMNode);

Applies To

Canvas, Flash, Frame, Image, MenuItem, Text, TextArea, Scrol1Bar, Web, and Window objects.

% KONFABULATOR 4.5 REFERENCE MANUAL 65

Core DOM Reference: Common Attributes and Functions convertPointFromParent()

Description

This function adds an object to another object as a child. This acts exactly like the DOMNode API
documented in “XML Services” and on the W3C web site.

While this is a generic DOM node API, not all objects allow children. If an error occurs, a DOMException
is thrown. The node added is returned as the function result.

In 4.0 or newer, you should use this in place of the addSubview() function.

Example
myFrame.appendChild(myImage);

Availability

Available in version 4.0 or newer.

convertPointFromParent()

converts a point from parent coordinates into view coordinates

Synopsis
Point object.convertPointFromParent(x, y);
Point object.convertPointFromParent(point);

Applies To

Canvas, Flash, Frame, Image, Scrol1Bar, Text, TextArea, and Web objects.

Description

This function converts a point from the coordinate system of the parent (the containing object) into the
coordinate system of the view. There are two variants of this function, one which takes an x and y value
and another which takes a point object. Both return a point object with the transformed coordinate. This
function is extremely useful when a view is transformed in some way (rotated, scrolled, etc.).

Example
var p = myView.convertPointFromParent(30, 20);
print(p.x, p.y J;

Availability

Available in version 4.0 or newer.

See Also
convertPointFromWindow(), convertPointToWindow(), convertPointToParent()

convertPointFromWindow()

converts a point from window coordinates into view coordinates

Synopsis
Point object.convertPointFromWindow(x, y);
Point object.convertPointFromWindow(point);

Applies To

Canvas, Flash, Frame, Image, Scrol1Bar, Text, TextArea, and Web objects.

66 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions convertPointToParent()

Description

This function converts a point from the coordinate system of the containing window into the coordinate
system of the view. There are two variants of this function, one which takes an x and y value and another
which takes a point object. Both return a point object with the transformed coordinate. This function is
extremely useful when a view is transformed in some way (rotated, scrolled, etc.).

Example
var p = myView.convertPointFromWindow(event.hOffset,

event.vOfffset);
print(C p.x, p.y J;
Availability
Available in version 4.0 or newer.

See Also

convertPointFromParent(), convertPointToParent(),
convertPointToWindow()

convertPointToParent()

converts a point from view coordinates into parent coordinates

Synopsis
Point object.convertPointToParent(x, y);
Point object.convertPointToParent(point);
Applies To

Canvas, Flash, Frame, Image, Scrol1Bar, Text, TextArea, and Web objects.

Description

This function converts a point from the coordinate system of the given view into that of its parent (e.g.,
its containing frame). There are two variants of this function, one which takes an x and y value and
another which takes a point object. Both return a point object with the transformed coordinate. This
function is extremely useful when a view is transformed in some way (rotated, scrolled, etc.).

Example
var p = myView.convertPointToParent(event.x, event.y);
print(p.x, p.y J;

Availability
Available in version 4.0 or newer.

See Also

convertPointFromParent(), convertPointFromWindow(),
convertPointToWindow()

convertPointToWindow()

converts a point from view coordinates into window coordinates

Synopsis
Point object.convertPointToWindow(x, y);
Point object.convertPointToWindow(point);

% KONFABULATOR 4.5 REFERENCE MANUAL 67

Core DOM Reference: Common Attributes and Functions getElementByld()

Applies To

Canvas, Flash, Frame, Image, Scrol1Bar, Text, TextArea, and Web objects.

Description

This function converts a point from the coordinate system of the view to the coordinate system of the
containing window. There are two variants of this function, one which takes an x and y value and another
which takes a point object. Both return a point object with the transformed coordinate. This function is
extremely useful when a view is transformed in some way (rotated, scrolled, etc.).

One example of using this is with the popupMenu() function, which takes window coordinates. You can
use view coordinates you receive in a mouse event and convert those into window coordinates easily with
this function.

Example
var p = myView.convertPointToWindow(event.x, event.y);
print(p.x, p.y J;

Availability
Available in version 4.0 or newer.

See Also

convertPointFromWindow(), convertPointFromParent(),
convertPointToParent()

getElementByld()

finds an element in the document by ID

Synopsis
DOMNode object.getETementById(id);
Applies To

Frame, Window, and Widget objects.

Description

This function allows you to locate any item in the document by its ID. The ID of an object should be
unique throughout the entire Widget document. At present, you can only call this on a Frame, Window, or
the global Widget object.

Example
img = widget.getElementById("fiery");

Availability

Available in version 4.0 or newer.

orderAbove()

moves an object above another in the z-order

Synopsis
void object.orderAbove(object | null);

68 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Common Attributes and Functions orderBelow()

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

Description

This function allows you to change an object’s z-order and bring it above another view, or to the top of
all its sibling views. Passing a sibling view moves this object above the given view. Passing null brings the
view to the top of all of its siblings.

It's important to understand that z-order shifting is only relative to sibling views, i.e., you cannot move a
view in front of one of its parent’s siblings.

This function only operates within a zOrder level. So you cannot order a view with zOrder 0 above a
view with zOrder 1. Likewise, you cannot order a view with zOrder 1 behind a view with zOrder O.

Example

myFrame.orderAbove(myImage);
myOtherFrame.orderAbove(null);

Availability

Available in version 4.0 or newer.

orderBelow()

move an object below another in the z-order
Synopsis

void object.orderBelow(object | null);
Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

Description

This function allows you to change an object's z-order and move it below another view, or below of all its
sibling views. Passing a sibling view moves this object below the given view. Passing null brings the view
to the bottom of all of its siblings (i.e., “send to back").

It's important to understand that z-order shifting is only ever relative to sibling views, i.e., you cannot
move a view behind of one of its parent's siblings.

This function only operates within a zOrder level. So you cannot order a view with zOrder zero above a
view with zOrder 1. Likewise, you cannot order a view with zOrder 1 behind a view with zOrder O.

Example

myFrame.orderBeTow(myImage);
myOtherFrame.orderBelow(null);

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 69

Core DOM Reference: Common Attributes and Functions removeChild()

removeChild()

removes a child object

Synopsis
DOMNode object.removeChild(DOMNode);

Applies To

Canvas, Flash, Frame, Image, MenuItem, Text, TextArea, Scrol1Bar, Web and Window objects.

Description

This function removes a child from a given parent node. This acts exactly like the DOMNode API as
documented later in this reference and on the W3C web site.

While this is a generic DOM node API, not all objects allow children. If an error occurs, a DOMException
is thrown. The node removed is returned as the function result.

In 4.0 or newer, you can use this in place of the removeFromSuperview() function.

Example
myFrame.removeChild(notWanted);

Availability

Available in version 4.0 or newer.

removeFromParentNode()

detaches an object from its parent

Synopsis
void object.removeFromParentNode()

Applies To
All objects.

Description

This function behaves like removeFromSuperview, but is more generic because it applies to any DOM
node. It allows you to easily detach a node from its parent node if it has one.

Example
myObject. removeFromParentNode();

Availability

Available in version 4.5 or newer.

removeFromSuperview()

detaches an object from its parent view

Synopsis
void object.removeFromSuperview()

Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

70 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: About Box savelmageToFile()

Description

This method removes an object from a window. You might do this because you are done with the object
and are reloading new information.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an object from a
window. Deleting the reference will not work.

This has been deprecated in favor of removeChild(Q).

Example
myObject.removeFromSuperview() ;

Availability

Available in version 3.0 or newer.

savelmageToFile()

writes a bitmap of an object to a file

Synopsis
void object.saveImageToFile(path, type)
Applies To

Canvas, Flash, Frame, Image, Text, TextArea, Scrol1Bar, and Web objects.

Description

Use this method to write out an image file with the contents of an object as it appears on screen. For
example, if you took an image object, made its size larger and told it to tile, this function would write an
image of that tiled image to disk, or you could use this to resize an image an write a thumbnail to disk.

You can write the image as a JPEG or PNG file. PNG files will get whatever transparency your object has.
You must pass jpeg or png as the second parameter.

Example
myImage.saveImageToFile(system.widgetDataFolder + "/myImage.png", "png");

Availability

Available in version 4.0 or newer.

About Box

block to define images for an about box

XML Name

<about-box>
JavaScript Name

Not available.
Attributes

about-image

about-text
about-version

% KONFABULATOR 4.5 REFERENCE MANUAL 71

Core DOM Reference: About Box about-image

Description

If used, the about-box XML block must contain one or more references to a path to an image contained
in an image block.

The about box option is not currently accessible through JavaScript.

about-image

block containing a path to an image

Usage
XML

Description

The image attribute of the about-box block must contain a valid path to an image.

If more than one image attribute is used, the images are shown sequentially to the user. When they are
the same size, they simply replace each other; when they are different sizes, the first fades out and the
next fades in.

Example

<about-box>
<about-image>Resources/About.png</about-image>
<about-image>Resources/Thanks.png</about-image>
</about-box>

Availability

Available in version 2.1 or newer.

about-text

text to display

Usage
XML

Description

You can specify any number of text objects to be displayed in your about box. These text items at present
only appear on the first page of your about box.

Attributes

color
data
hOffset
font
size
style
shadow
url
vOffset

72 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Action about-version

Except for shadow and ur1, these are all the same attributes as can be used on a full-fledged text object.
See the section on Text objects for information on how these attributes are used. See the section on
Shadow objects for information about how those objects are structured. The ur1 attribute turns the text
object into a clickable link that opens a browser targeted at the URL you specify.

Availability

Available in version 2.1 or newer. The ur1 attribute is available in 3.0 or newer.

about-version

element to describe where and how the version should be placed

Usage
XML

Description

This is a special case of the text element, described above. It has all the same attributes, and can only be
placed on the first page of an about box. The only difference is that this tag represents where the
Widget's version number will appear. The version number is taken from the Widget definition's version
attribute.

Availability

Available in version 2.1 or newer.

Action

code block not associated with an object

XML Name
<action>
JavaScript Name
Not directly available (see below).
Attributes
file
interval
trigger
Description

The action XML block defines when and how a Widget executes code that is triggered automatically
rather than by a user.

Actions are accessible in JavaScript as properties of the Widget object. Instead of producing an array of
actions, in version 4.0 and newer you can reference actions by getting and setting them on the widget
global object. For example, you can set your Widget's onUnToad handler during runtime simply by using
the trigger name:

widget.onUnToad = myShutdownFunction;

See the Widget object for more information on these triggers.

% KONFABULATOR 4.5 REFERENCE MANUAL 73

Core DOM Reference: Action file

file

path to an external JavaScript file

Description

Embedding JavaScript code into an XML file might present unique problems for some developers. Your
preferred text editor might not gracefully support syntax highlighting for both XML and JavaScript at the
same time, your JavaScript code might be large and complex and need better management, or you might
just be frustrated by the impositions of having to escape common characters that would confuse the XML
portion of the Widget. To alleviate any or all of these, we allow you to reference an external file.

You can reference files by specifying the fi1le attribute for the <action> block. Alternatively, you can
simply use include().

Example
<action trigger="onLoad" file="main.js"/>
<action trigger="onlLoad">
include("main.js");
</action>

interval

time in seconds to wait between triggers

Description

The interval attribute for the action block is to be used with the onTimer trigger attribute. It defines
how many seconds, or fractions of a second, to wait between onTimer code executions.

If no interval is defined for an on timer trigger, it defaults to one minute.

Example

<!-- This will cause the Widget to beep every
two minutes -->
<action trigger="onTimer" interval="120">
beep(;
</action>
<!-- This will cause the counter to increase ten
times a second -->
<action trigger="onTimer" interval="0.1">
counter ++;
</action>

Starting in version 2.0, this mechanism is deprecated in favor of the new Timer objects (see the section
on Timer objects later in this manual).

trigger

event that triggers the enclosed code

Values

onGainFocus

onKeyDown

onKeyUp
onKonsposeActivated
onKonsposeDeactivated
onlLoad

onLoseFocus

74 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Action trigger

onMouseDown
onMouseEnter
onMouseExit

onMouseUp
onPreferencesCancelled
onPreferencesChanged
onRunCommandInBgComplete
onScreenChanged
onTellWidget

onTimer

onUnload
onWakeFromSleep
onWillChangePreferences
onYahoolLoginChanged

Description
The trigger attribute for the action block defines what triggers the contained block of code.

In version 4.0 and newer, you can change what gets executed by these triggers using the widget global
object. That object now has a set of attributes with the same names as these triggers. See the widget
object for more information.

onGainFocus triggers when the Widget is activated by the user. This is useful if you want your Widget to
have an active and inactive state. This action is typically triggered when the Widget first starts running. In
version 2.0 and newer, you should generally use the onGainFocus handler on each window and reserve
the Widget onGainFocus handler for truly Widget-wide activation handling.

onKonsposeActivated and onKonsposeDeactivated execute when the user invokes and dismisses
Heads-up Display (formerly Konsposé) mode. This gives the Widget the opportunity to change display
modes or take other actions (for example, some Widgets display their “focused” mode as if
onGainFocus had been received when Heads-up Display is active).

onlLoad executes when the Widget is first loaded and is used to define and store functions that might be
used elsewhere in the Widget.

onLoseFocus triggers when the Widget is deactivated by the user. This is useful if you want your Widget
to have an active and inactive state. In version 2.0 and newer, you should generally use the onLoseFocus
handler on each window and reserve the Widget onLoseFocus handler for truly Widget-wide activation
handling.

onPreferencesCancelled is executed when the user cancels out of the preferences dialog.

onPreferencesChanged is executed when the user saves the preferences. Note that nothing is executed
if the user cancels out of the preferences dialog as they didn't change the preferences in that case.

onRunCommandInBgComplete is executed when a command started with runCommandInBg() completes
(see onRunCommandInBgComplete).

onScreenChanged fires if any screen size, arrangement, or color depth changes are made using the
Displays System Preference panel (note that the screen the Widget itself is on might have been affected).

onTellWidget is called when another Widget or application calls the te11Widget interface to send your
Widget a message. You should be careful about what you decide to do with the message you receive. See
tellWidget() for more detail. This trigger is available in Widget Engine 2.0 or newer.

onTimer has been deprecated in favor of Timer objects. See “Timer" for more information.

% KONFABULATOR 4.5 REFERENCE MANUAL 75

Core DOM Reference: Canvas trigger

onUnload executes when the Widget is closed. This is useful for doing any last minute manual preference
saving (preferences set in the Widget Preferences dialog are saved automatically when they are changed
by the user), as well as making sure any external applications you are talking to are closed up and aware
of your departure. Note that you should not perform any lengthy operations in this trigger as Widgets are
encouraged to shut down quickly (an example of a lengthy operation would be retrieving something
from the network).

onWakeFromS1eep executes when the computer wakes from a state of sleep. It should be noted that
some desktops have a several second lag between waking up and reconnecting to the network, so you
might want to add a sTeep() call to your code if your Widget wants to connect to the Internet. In
version 3.0 or newer, timers are stopped when the computer goes to sleep and are not restarted until
onWakeFromS1eep is called.

onWillChangePreferences executes when the user asks to edit the Widget's preferences (or when the
showwWidgetPreferences () JavaScript call is made).

onYahoologinChanged executes when the user logs in or out of their Yahoo! account. When called, you
can check the current state of the user login by calling yahooCheckLogin().

The remaining triggers onKeyDown, onKeyUp, onMouseDown, onMouseUp, onMouseEnter, and
onMouseExit execute when the corresponding user action is detected within the main window of the
active Widget, and there is no other object to receive them. Note that using the global scope mouse
actions causes your Widget to no longer be draggable without having to hold down the command key.

Example

<!— Redraw the clock when we wake from sleep -->

<action trigger="onWakeFromSleep">
updateClockFace();

</action>

<!—- Update our info when the user changes the preferences -->

<action trigger="onPreferencesChanged">
refreshTickerSymbols();

</action>

Canvas

free-form drawing into a bitmap

XML Name

<canvas>

JavaScript Name
Canvas

Attributes
getContext()

Description

The Canvas object allows free-form vector drawing into a bitmap you control. Currently, only 2D
graphics are possible. Canvas follows the same API as that provided by Safari and Firefox. Code written
for those environments should also work in a Widget. In general, we will match Firefox's rendering since
we use Cairo to draw in a Canvas object.

Our implementation of Canvas does not feature the toDataURL method available in Firefox. If you wish
to save the image you have created to a file, you can use the general saveImageToFile method of the
engine.

76 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D getContext()

Example
// in XML
<canvas id="test" width="200" height="200" vOffset="10"
hOffset="10"/>

// Then Tlater, in Javascript
var ¢ = widget.getElementById("test");

// or create right in Javascript...
var ¢ = new Canvas();

c.width = c.height = 200;
c.hOffset = c.vOffset = 10;

Attributes

getContext()

gets a drawing context for a canvas

Synopsis
context = canvas.getContext(type);
Description

This function returns a drawing context that you use to draw things in a Canvas object's bitmap.
Currently, the only type of context that can be used is a 2D context. This means that at present, the only
parameter that is valid is 2d.

See the section on CanvasRenderingContext2D for the different drawing APIs that are available.

Example
c = widget.getElementById("myCanvas");

ctx = c.getContext("2d");
Availability

Available in version 4.0 or newer.

CanvasRenderingContext2D

object used to draw into a canvas object

XML Name
Not available in XML.

JavaScript Name
CanvasRenderingContext2D

Attributes

fi11Style

globalAlpha
globalCompositeOperation
TineCap

TineJoin

TineWidth

% KONFABULATOR 4.5 REFERENCE MANUAL 77

Core DOM Reference: CanvasRenderingContext2D fillStyle

miterLimit
strokeStyle

Functions

addCoTlorStop()
arcQ

beginPath()
bezierCurveTo()
clearRect()

clipO

closePath()
createlinearGradient()
createPattern()
createRadialGradient()
drawImage()

1110

fi11Rect()
TineTo()

moveTo ()
quadraticCurveTo()
rect()

restore()

rotate()

save()

scale()

stroke()
strokeRect()
translate()

Description
This object can only be created through a call to canvas.getContext("2d").

You use this object to do the actual drawing into the context.

Example

// in XML
<canvas id="test" width="200" height="200" vOffset="10"
hOffset="10"/>

// Then later, in Javascript
var ¢ = widget.getElementById("test");

var ctx = c.getContext("2d");
ctx.clearRect(0, 0, 200, 200);

fillStyle

color or pattern to use to fill an area of the canvas

Description

You can set a color or pattern to use when filling paths in the canvas drawing context. You can use a
simple color expressed as #FFFFFF (or the shorter #FFF), as well as a gradient or pattern object. If you
wish to draw something semi-transparent, you can specify transparency using rgba() colors. The last
parameter of rgba is a floating-point number from 0 to 1.0 indicating the amount of transparency, where
1.0 is fully opaque.

78 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D globalAlpha

Example

// standard color
ctx.fill1Style = "#FFF"; // or "#FFFFFF"

// with alpha
ctx.fi11Style = "rgba(255, 255, 255, 0.5)";

// gradient

grad = ctx.createlLinearGradient(0, 50, 0, 95);
Tingrad2.addColorStop(0.5, "#000");
1ingrad2.addColorStop(1, "rgba(0,0,0,0)");
ctx.fi11Style = grad;

Availability

Available in version 4.0 or newer.

globalAlpha

controls the overall alpha to draw with

Description

You can set the gTobalAlpha attribute to affect all drawing calls that follow it. This global alpha setting is
multiplied with any alpha you might be drawing with. For example, if you set the global alpha to 0.5 and
then fill a path with a color that has an alpha of 0.5, the effective alpha is 0.25. In other words, it's as if
you adjusted the opacity of the entire Canvas object to 0.5.

Example

// half transparent
ctx.globalAlpha = 0.5;

Availability

Available in version 4.0 or newer.

globalCompositeOperation

compositing mode of the canvas

Description

You can control how images are composited onto the canvas by setting the
globalCompositeOperation attribute. The default compositing mode is source-over. This means that
as new items are drawn, they are blended over the existing contents. There are many different
compositing modes:

copy
darker

destination-atop
destination-in
destination-out
destination-over
Tighter
source-atop
source-out
source-over

xor

% KONFABULATOR 4.5 REFERENCE MANUAL 79

Core DOM Reference: CanvasRenderingContext2D lineCap

Example

// draw behind what's there.
ctx.globalCompositeOperation = "destination-over";

Availability

Available in version 4.0 or newer.

lineCap

style of line cap to use

Values
butt

round
square
Description
You can control how the end caps of lines are displayed by setting the 1ineCap attribute. The default
value is butt.
Example
ctx.lineCap = "round";

The following image shows butt, round, and square ends, respectively.

Availability

Available in version 4.0 or newer.

lineJoin

style to use when joining lines together

Values
round
bevel
miter

Description

You can control how lines are joined together by setting the 1ineJoin attribute. The default value is
miter.

Example
ctx.lineloin = "round";

80 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D lineWidth

The following image shows round, bevel, and miter joins, respectively.

%

Availability

Available in version 4.0 or newer.

lineWidth

width to use when drawing lines

Description

This attribute allows you to set the width of lines as they are drawn.

Example
ctx.lineWidth = 2.0;

Availability

Available in version 4.0 or newer.

miterLimit

controls how the miter line join deals with angles

Description

This attribute allows you to control the point at which what would normally be a miter join turns into a
bevel join. This is used for angles that are acute, where the intersection of the lines would form a very
long miter otherwise. The drawing system divides the length of the miter by the line width. If the result is
greater than the miter limit, the style is converted to a bevel. The default value for this attribute is 10.0.

Example
ctx.miterLimit = 2.0;

Availability

Available in version 4.0 or newer.

strokeStyle

color or pattern to use to stroke a path

Description

You can set a color or pattern to use when stroking paths in the canvas. You can use a simple color
expressed as #FFFFFF (or the shorter #FFF), as well as a gradient or pattern object. If you wish to use a
color with alpha, you can use rgba() notation as show below. The last parameter of rgba is a floating
point number from 0 to 1.0 indicating the amount of transparency, where 1.0 is fully opaque.

% KONFABULATOR 4.5 REFERENCE MANUAL 81

Core DOM Reference: CanvasRenderingContext2D addColorStop()

Example

// standard color
ctx.strokeStyle = "#FFF"; // or "#FFFFFF"

// with alpha
ctx.strokeStyle = "rgba(255, 255, 255, 0.5)";

// gradient
grad = ctx.createlLinearGradient(0, 50, 0, 95);
Tingrad2.addColorStop(0.5, "#000");
1ingrad2.addColorStop(1, "rgba(0,0,0,0)");
ctx.strokeStyle = grad;

Availability

Available in version 4.0 or newer.

addColorStop()

adds a color stop to a linear or radial gradient

Synopsis
gradient.addColorStop(offset, color);

Description

This function is used on linear and radial gradient objects created with createLinearGradient() and
createRadialGradient(). It controls the color ramp of the gradient—what each color is along the way
and where they start and end. The offset parameter is a float between 0.0 and 1.0.

The simplest ramp would be to have two stops at offsets 0 and 1, with the color at 0 being one color and
the color at another color.

Example

// go from transparent black to opaque red

grad = ctx.createlLinearGradient(25, 25, 125, 125);
grad.addColorStop(0, “rgba(0, 0, 0, 0)”);
grad.addColorStop(1, “rgba(255, 0, 0, 1)”);

ctx.fi11Style=grad;
ctx.fil1Rect(25, 25, 100, 100);
ctx.strokeRect(25, 25, 100, 100);

Availability

Available in version 4.0 or newer.

82 | KONFABULATOR 4.5 REFERENCE MANUAL #lo

Core DOM Reference: CanvasRenderingContext2D arc()

arc()

adds an arc to the current path

Synopsis
context.arc(x, y, radius, startAngle, endAngle, anticlockwise);

Description

This method adds an arc of a circle to the current path. x and y are the coordintes of the arc's center
point. The arc's starting point is the distance of the radius from the arc's center point along the
startAngTle. If the current path already has a subpath, a straight line is drawn from the end point of that
segment to the starting point of the arc. The clockwise parameter indicates the direction the arc should be
drawn. Angles are expressed in radians, and O starts on the X axis.

Example
// arcing 90 degrees, but counter-clockwise
ctx.beginPath();
ctx.arc(75, 75, 30, 0, Math.PI / 2, true);
ctx.stroke();

Availability

Available in version 4.0 or newer.

beginPath()

starts a new path

Synopsis
context.beginPath();

Description

To draw arbitrary shapes, you first create a path using beginPath(). Then you add segments (subpaths)
to it with APIs such as arc() or rect(). When you are done with a path, you can close it with
closePath(), or stroke or fill the current path with stroke() and fi11(Q), respectively.

Example

ctx.beginPath(Q);
ctx.rect(0, 0, 100, 100);
ctx.stroke();

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 83

Core DOM Reference: CanvasRenderingContext2D bezierCurveTo()

bezierCurveTo()

adds a bezier curve to the current path

Synopsis
context.bezierCurveTo(cplx, cply, cp2x, cp2y, X, Y);

Description

This method adds a bezier curve from the current point in the current subpath to x, y. The curve is
affected by the two control points given.

Example

// draw a large, diagonal S-curve
ctx.beginPath();

ctx.moveTo(0, 0);

ctx.bezierCurveTo(0, 150, 150, 0, 150, 150);
ctx.stroke();

Availability

Available in version 4.0 or newer.

clearRect()

clears an area of the canvas
Synopsis

context.clearRect(x, y, width, height);
Description

This method clears the given rectangle by filling the rectangle with transparent pixels. This can be used to
completely start over and redraw a portion of the canvas. It is equivalent to setting the composite mode
to “copy” and then filling a rectangle with a color of rgba(0,0,0,0).

Example
ctx.clearRect(10, 10, 75, 75);

Availability

Available in version 4.0 or newer.

84 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D clip()

clip()

clips the current path

Synopsis
context.clipQ);

Description

This function clips the drawing in the context to the current path, using the nonzero winding-number
rule. Clipping a context always intersects with the current clip. If you wish to restore the clip to a previous
state, you must save and restore the graphics state as needed.

Example

// fill a circle the hard way, clip to a

// circular arc, then fill the entire canvas.
ctx.beginPath();

ctx.arc(75, 75, 50, 0, Math.PI*2, true);
ctx.clipQ;

ctx.fillRect(0, 0, 150, 150);

Availability

Available in version 4.0 or newer.

closePath()

closes the current path

Synopsis
context.closePath();
Description

This method closes any open subpath by drawing a straight line from the current path back to the starting
point of the path. Open paths are implicitly closed if you call fi11() or c1ip(). You can call stroke()
without closing the path, however.

Example
ctx.closePath(Q);

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 85

Core DOM Reference: CanvasRenderingContext2D createLinearGradient()

createLinearGradient()

creates a linear gradient

Synopsis
context.createlLinearGradient(x0, y0, x1, yl);

Description

This method creates a new linear gradient that gradates between the two points given. It is important to
realize that the gradient will continue beyond those points as well when you use it to fill or stroke an area
of the canvas.

After creating a gradient, you need to assign color stops to tell it what colors it will be blending along the
way. See addColorStop() for more information.

Example

grad = ctx.createLinearGradient(0, 0, 150, 150);
grad.addColorStop(0, “#F00”);

grad.addColorStop(0.5, “#0F0”);
grad.addColorStop(1, “#00F”);

ctx.fi11Style = grad;

ctx.fil1lRect(0, 0, 150, 150);

Availability

Available in version 4.0 or newer.

createPattern()

creates a pattern object

Synopsis

context.createPattern(image, repeat);

Values
repeat
repeat-x
repeat-y
no-repeat

Description

This method creates a new pattern based on the image you provide. You can control how the pattern
repeats with the repeat parameter. The values are the same as those used by CSS background-repeat.

86 | KONFABULATOR 4.5 REFERENCE MANUAL ﬁ'ﬁ

Core DOM Reference: CanvasRenderingContext2D createRadialGradient()

Example
patt = ctx.createPattern(myImage, "repeat");
ctx.fi11Style = patt;
ctx.fillRect(0, 0, 150, 150);

LD
LELELE
LELELE

Availability

Available in version 4.0 or newer.

createRadialGradient()

creates a radial gradient

Synopsis
context.createRadialGradient(x0, y0, rO0, x1, yl, rl);

Description

This method creates a new radial gradient that gradates between the two given points. It is important to
realize that the gradient will continue beyond those points as well when you use it to fill or stroke an area
of the canvas.

After creating a gradient, you need to assign color stops to tell it what colors it will be blending along the
way. See addColorStop() for more information.

Example
radgrad = ctx.createRadialGradient(75, 75, 10, 70, 70, 40);
radgrad.addColorStop(0, "#F00");
radgrad.addColorStop(0.7, "#600");
radgrad.addColorStop(1, "rgba(33, 0, 0, 0)");
ctx.fi11Style = radgrad;
ctx.fil1Rect(0, 0, 150, 150);

% KONFABULATOR 4.5 REFERENCE MANUAL 87

Core DOM Reference: CanvasRenderingContext2D drawlimage()

Availability

Available in version 4.0 or newer.

drawlmage()

draws an image

Synopsis
context.drawImage(image, x, y);
context.drawImage(image, x, y, width, height);
context.drawImage(image, srcX, srcY, srcWidth, srcHeight,
dstX, dstY, dstWidth, dstHeight);

Description

This function allows you to draw an image into a canvas. There are three variants, each with a different
level of control. The first variant draws the image at its full size at the location specified. The second
variant allows you to draw the image at a specific location and size. The third variant allows you to render
just a specific portion of an image at a specified location and size.

In version 4.5 or later, this function also accepts a Canvas object as well as an Image.

Example
ctx.drawImage(myImage, 0, 0, 300, 300);

Availability

Available in version 4.0 or newer.

fill()

fills the current path

Synopsis
context.fil11Q);

Description

This method fills the current path with the current fi11Sty1e setting. It closes any currently open
subpath by connecting the current point to the starting point of the subpath with a straight line.

Example

ctx.beginPath();
ctx.fi11Style = "#00B";
ctx.rect(10, 10, 75, 75);
ctx.fi110;

88 | KONFABULATOR 4.5 REFERENCE MANUAL #lo

Core DOM Reference: CanvasRenderingContext2D fillRect()

Availability

Available in version 4.0 or newer.

fillRect()

fills a rectangle with the current fill style

Synopsis
context.fillRect(x, y, width, height);
Description

This method fills the given rectangle with the current fi11Style. Any current path that might be open is
closed and ignored.

Example

ctx.fi11Style = "#00B";
ctx.fillrect(10, 10, 75, 75);

Availability

Available in version 4.0 or newer.

lineTo()

adds a line segment to the current path

Synopsis
context.lineTo(x, y);

Description

This method adds a line segment from the current point to the point specified. This point becomes the
current point. If no current point has been specified yet in the current path, this function sets the current
point to the point specified.

Example

ctx.beginPath(Q);
ctx.moveTo(10, 140);
ctx.lineTo(75, 10);
ctx.lineTo(140, 140);
ctx.stroke();

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 89

Core DOM Reference: CanvasRenderingContext2D moveTo()

moveTo()

begins a new subpath in the current path

Synopsis
context.moveTo(X, y);

Description

This method closes any previous subpath and starts a new one. You can use this to create what appear to
be multiple shapes that are part of the same path.

Example

// create two triangles and fill them
ctx.beginPath();

ctx.moveTo(10, 10);

ctx.lineTo(75, 65);

ctx.lineTo(140, 10);

ctx.moveTo(10, 140);

ctx.lineTo(75, 80);

ctx.lineTo(140, 140);

ctx.fi110;

Availability

Available in version 4.0 or newer.

quadraticCurveTo()

adds a quadratic curve to the current path

Synopsis
context.quadraticCurveTo(cpx, cpy, X, Y);

Description

This method adds a quadratic curve that travels from the current point to the x and y positions specified.
The control point specified by cpx and cpy adjusts the curve.

Example
ctx.beginPath();
ctx.moveTo(10, 10);
ctx.quadraticCurveTo(140, 10, 140, 140);
ctx.stroke();

90 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D

Availability

Available in version 4.0 or newer.

rect()

rect()

adds a rectangle to the current path

Synopsis
context.rect(x, y, width, height);

Description

This method adds a rectangle to the current path as a complete subpath.

Example
ctx.beginPath();
ctx.lineWidth = 2;
ctx.rect(10, 10, 75, 75);
ctx.stroke();

Availability

Available in version 4.0 or newer.

restore()

restores a previously saved graphics state

Synopsis
context.restore();

% KONFABULATOR 4.5 REFERENCE MANUAL

91

Core DOM Reference: CanvasRenderingContext2D rotate()

Description

This method restores the most recent graphics state saved by save (). See the save() parameter for more
information.

Example
ctx.restore();

Availability

Available in version 4.0 or newer.

rotate()

applies a rotation transformation

Synopsis
context.rotate(angleInRadians);

Description

This method applies a rotation to the current transformation matrix (CTM). The angle is specified in
radians. All drawing is affected by this transformation. To restore the transformation to normal, it is
necessary to save the graphics state before rotating and then restore it when you no longer need it.

Example
rad = 45 * .01745329252; // 45 degrees
ctx.save();

ctx.translate(75, 75);

ctx.rotate(rad);

ctx.strokeRect(-50, -50, 100, 100);
ctx.restore();

Availability

Available in version 4.0 or newer.

save()

saves the current graphics state

Synopsis
context.save();

92 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D scale()

Description

This method saves the current graphics state onto a stack. This allows you to make changes to various
settings in the drawing context and then restore the settings to what you had previously. Calls to save
must be balanced by calls to restore().

The settings that are saved as part of the graphics state are:

translation matrix (CTM)
clip

Tine cap

Tine width

Tine join

miter Timit

fi11 and stroke styles
global alpha

Note: The current path is not saved.

Example

ctx.fillStyle = "#0B0O";

ctx.save(Q);

ctx.fillStyle "#B00";

ctx.fillRect(10, 10, 80, 80);
ctx.restore();

// now the fill style 1is green again.
ctx.fil1Rect(60, 60, 80, 80);

Availability

Available in version 4.0 or newer.

scale()

scales the current graphics state
Synopsis

context.scale(sx, sy);
Description

This method scales the current transformation matrix of the context. In the example below, we scale the
drawing to five times normal.

As with rotation or translation, if you wish to restore the state, you should use save() and restore() as
appropriate.

% KONFABULATOR 4.5 REFERENCE MANUAL 93

Core DOM Reference: CanvasRenderingContext2D stroke()

Example
ctx.scale(5, 5);

grad = ctx.createLinearGradient(5, 5, 100, 100);
grad.addColorStop(0, “rgba(255, 0, 0, 0)”);
grad.addColorStop(1, “rgba(255, 0, 0, 1)”);

ctx.fill1Style = grad;
ctx.fillRect(5, 5, 100, 100);
ctx.strokeRect(5, 5, 100, 100);

Availability

Available in version 4.0 or newer.

stroke()

strokes the current path

Synopsis
context.stroke();

Description
This method strokes the current path with the current strokeStyle, TineWidth, TineCap, TineJoin,
and miterLimit settings. It does not close any currently open subpath.

Example

ctx.beginPath();
ctx.lineWidth = 2;
ctx.rect(10, 10, 75, 75);
ctx.stroke();

Availability

Available in version 4.0 or newer.

strokeRect()

strokes a rectangle with the current stroke style

Synopsis
context.strokeRect(x, y, width, height);

94 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: CanvasRenderingContext2D translate()

Description

This method strokes the given rectangle with the current strokeStyle, TineWidth, TineCap,
TineJloin, and miterLimit settings. Any current path that might be open when this is called is closed
and ignored.

Example

ctx.TineWidth = 2;
ctx.strokeRect(10, 10, 75, 75);

Availability

Available in version 4.0 or newer.

translate()

translates the transformation matrix

Synopsis
context.translate(dx, dy);

Description

This method translates the current transformation matrix by the distances given. This effectively moves
the origin of the coordinate system you are drawing with.

Example
ctx.translate(75, 75);

grad = ctx.createlLinearGradient(5, 5, 100, 100);
grad.addColorStop(0, “rgba(255, 0, 0, 0)”);
grad.addColorStop(1, “rgba(255, 0, 0, 1)”);

ctx.lineWidth = 2;
ctx.fi11Style=grad;
ctx.fillRect(0, 0, 50, 50);
ctx.strokeRect(0, 0, 50, 50);

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 95

Core DOM Reference: Flash

Flash

translate()

block to define a flash object

Common Attributes
hATign
height
hRegistrationPoint
name
rotation
vAlign
VRegistrationPoint
width

Attributes

allowNetworking
base

bgColor
deviceFont
frameNumber
useFlashContextMenu
flashvars

Toop

minVersion
onFsCommand
onFsReadyState
quality

sAlign

scale

src

wMode

Functions

back ()
forward()
getVariable()
gotoFrame()
isPlaying()
ToadMovie()
pan()
percentLoaded()
play O

reload()
rewind()
setVariable()
setZoomRect()
stop()
stopPTay()
tCallFrame()
tCallLabel ()
tCurrentFrame()
tCurrentLabel)
tGotoFrame()
tGotolLabel ()
totalFrames()
tGetProperty()

96 | KONFABULATOR 4.5 REFERENCE MANUAL

Core DOM Reference: Flash allowNetworking

tGetPropertyAsNumber ()
tGetPropertyNum()
tSetProperty()
tSetPropertyNum()
tStopPlay()

tPlay ()

version()

zoom()

Synopsis
flash

Description

The functions/attributes/events that are in bold and italics are those that are Flash OCX, and are features
of Macromedia flash that are exposed to assist the Widget Developer in doing what they normally can do
from a webpage.

Example

<widget minimumVersion="4.5">
<window name="mainWindow" width="500" height="500"
style="background-color:#ffeeaa">
<flash name="flashView" height="450" width="450" hOffset="25"
vOffset="25">
<src>http://1.yimg.com/cosmos.bcst.yahoo.com/ver/242/player-2007-08-
28-1213/swf/FLVVideo.swf</src>
</flash>
</window>
</widget>

Availability

The f1ash object is available in version 4.5 or newer.

allowNetworking

enables network functionality

Values

all
internal
none

Description

Use this attribute to enable an swf file to access network functionality. Setting to all allows use of any
networking APIs in the swf file. Setting to internal allows the swf file to call networking APIs that do not
perform browser navigation or browser interaction functions. Setting to none prevents the swf file from
calling any browser navigation APIs, browser interaction APIs, or SWF-to-SWF communication APIs.

Example
<flash ... allowNetworking = “all” ... />

myFlash.allowNetworking = "all1";

Availability

Available in version 4.5 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL 97

Core DOM Reference: Flash base

base

specifies base URL

Description

Specifies a base directory or URL used to resolve all relative path statements in a Flash Player movie. This
attribute is helpful when your Flash Player movies are kept in a different directory from your other files.

Example
<flash ... base= “http://www.yourdomain.com” ... />
myFlash.base = "http://www.yourdomain.com";
Availability

Available in version 4.5 or newer.

bgColor

sets the background color of a movie

Description

Overrides the background color of a movie, or uses the default. Specify an integer of the form
red*65536+green*256+blue to override the default. Specify -1 to use the default. Can also accept
standard HTML hex (e.g., #ffffff = white). For Macintosh, you need to use a reload() call to change
bgColor.

Example
<flash ... bgColor = “#AAFFFF” ... />

myFlash.bgColor = "#AAFFFF";

Availability

Available in version 4.5 or newer.

deviceFont

substitutes a font

Values

true
false

Description

If set to true and the font is installed on the system that is viewing the Flash movie, the font information
installed on the system is substituted. Text is aliased (rough) regardless of the value of the quality
attribute.

If the font is not installed on the system, the text comes out anti-aliased (smooth) if the quality of the
movie is set to high.

Default is false.

Example
<flash ... deviceFont = “true” ... />

98 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash frameNumber

myFlash.deviceFont = true;

Availability

Available in version 4.5 or newer.

frameNumber

sets the currently displayed frame of the movie

Description

To advance or rewind the movie, use this attribute to set the current frame number. The change takes
place immediately, so no reload is necessary.

Example
<flash ... frameNumber = “5” ... />

myFlash.frameNumber=5;
Availability

Available in version 4.5 or newer.

useFlashContextMenu

sets the menu to use for right click

Values

true
false

Description

Use this attribute to control which menu displays when the user right-clicks on the Flash view. If true, the
Flash view uses the flash context menu. If false, the Flash view uses the widget context menu. Default is
false.

Example
<flash ... useFlashContextMenu = “true” ... />

myFlash.useFlashContextMenu = true;
Availability

Available in version 4.5 or newer.

flashVars

allows variable information to pass to the flash file

Description

Use this attribute to allow variable information to be passed to the flash file. All data is passed as
key/value pairs separated by & For Macintosh, you need to use a reload() call to change flashvars.

Example
<flash ... flashVars="p1ig=01ink&cow=moo&dog=bark™ ... />

myFlash.flashVars = "pig=0ink&cow=moo&dog=bark";

% KONFABULATOR 4.5 REFERENCE MANUAL 929

Core DOM Reference: Flash loop
Availability
Available in version 4.5 or newer.

loop

enables looping

Values

true
false

Description

Use this attribute to enable the animation to loop. Setting to true enables looping; setting to false plays
once and stops. Default is true.

Example
<flash ... loop = “true” ... />

myFlash.loop = true;

Platform Notes

For Macintosh, you need to use a reload() call to change the loop value.

Availability

Available in version 4.5 or newer.

minVersion

sets the minimum Flash version required

Description

Use this attribute to specify the minimum Flash version that must be available for this widget to work
properly. It is specified as multiples of 65536. For e.g. version 9.0 is 9 * 65536 = 589824.

Example
<flash ... minversion = “589824” ... />

myFlash.minversion = 589824;

Platform Notes

For Macintosh the required minimum version is 9.0, but you can set a higher minimum version.

Availability

Available in version 4.5 or newer.

onFsCommand

installs handler for fscommand event

For More Information

See fscommand.

100 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash onFsReadyState

onFsReadyState

installs handler for fsreadystate event

For More Information

See fsreadystate.

quality

sets the rendering quality

Values
Low
AutolLow
Medium
AutoHigh
High
Best

Description

Use this attribute to set the rendering quality. Default is High.
Low prioritizes speed over appearance and never uses anti-aliasing.

AutoLow prioritizes speed at first, but improves appearance whenever possible. Playback begins with anti-
aliasing turned off, then turns on if Flash Player detects that the processor can handle it. Note: SWF files
authored using ActionScript 3.0 do not recognize AutoLow.

Medium applies some anti-aliasing and bitmaps are not smoothed. Quality is better than Low; worse than
High.

AutoH1igh prioritizes playback speed and appearance equally at first, but compromises appearance for
speed when necessary. Playback begins with anti-aliasing turned on, then turns off if frame rate drops
below the specified threshold.

High prioritizes appearance over speed and always applies anti-aliasing. If the SWF file does not contain
animation, bitmaps are smoothed; if it contains animation, bitmaps are not smoothed.

Best provides the best display quality and does not consider playback speed. All output is anti-aliased
and all bitmaps are smoothed.

Examples

// to Set
<flash ... quality = “Low” ... />

myFlash.quality = “Low”;
Availability

Available in version 4.5 or newer.

sAlign

sets the alignment mode

Values
lltll

r

% KONFABULATOR 4.5 REFERENCE MANUAL | 101

Core DOM Reference: Flash

n
"

et
neqn
"
"p1"

Description

scale

Use this attribute to set the alignment mode, which consists of bit flags. t=top, r=right, |=left, b=bottom,

tr=top-right, ti=top-left, br=bottom-right, bl=bottom-left.

Example
<flash ... sAlign = “1t” ... />

myFlash.sAlign = "1t";

Availability

Available in version 4.5 or newer.

scale

sets the scale mode

Values

showATl
noBorder
exactFit
noScale

Description

Use this attribute to specify the scale mode. Default is showAll.

Example
<flash ... scale = “exactFit” ... />
myFlash.scale = "exactfit";
Availability

Available in version 4.5 or newer.

Src

specifies the Flash file to load

Description
Use this attribute to specify the Flash file to load. Returns a string.

Example
<flash ... src = “http://www.yourdomain.com/flash.swf” ...
myFlash.src = "http://www.yourdomain.com/flash.swf";

Platform Notes

For Macintosh, changing this value requires a reload() for the new value to take affect.

102 | KONFABULATOR 4.5 REFERENCE MANUAL

Core DOM Reference: Flash wMode

Note

Special security settings are dependent on the value of src. If srcis given a remote URL, ToadMovie is
restricted to only remote URL loading and fsCommand is disabled.

Availability

Available in version 4.5 or newer.

wMode

gets Window drawing mode

Description

Use this attribute to get the Window drawing mode, which is always “transparent.” Read only; cannot be
changed.

Example
var currentMode = myFlash.wMode;

Availability

Available in version 4.5 or newer.

back()

returns to the previous frame

Synopsis
back(Q);

Description

This function returns to the previous frame, making that the current frame.

Example
myFlash.back(Q);

Availability

Available in version 4.5 or newer.

forward()

advances to the next frame

Synopsis
forward();

Description

This function advances to the next frame, making that the current frame.

Example
myFlash.forward(Q);

Availability

Available in version 4.5 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 103

Core DOM Reference: Flash getVariable()

getVariable()

returns the value of the variable

Synopsis
getVariable(string varName);

Description

This function returns the value of the Flash variable varName. Returns null if the variable does not exist.

Example
myFlash.getVariable("/:message");

Availability

Available in version 4.5 or newer.

gotoFrame()

goes to the specified frame

Synopsis
gotoFrame(int frameNumber);
Description

This function activates frameNumber as the current frame. If the data for the frame is not yet available,
the player goes to the last available frame and stops, causing unexpected results during playback. Use
percentLoaded() to determine whether enough of the movie is available before executing gotoFrame().

Example
myFlash.gotoFrame(5);

Availability

Available in version 4.5 or newer.

isPlaying()

returns true if the movie is playing
Synopsis

isPlayingQ;
Description

This function returns true if the movie is currently playing; false if not.

Example

if(myFlash.isPlaying() {
alert("Playing");

}else {
alert("Not Playing™);
}
Availability

Available in version 4.5 or newer.

104 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash loadMovie()

loadMovie()

loads the movie

Synopsis
ToadMovie(int layerNumber, string url);

Description

This function loads the movie specified by url to layerNumber.

Example
myFlash.loadMovie(0, "http://www.yourdomain.com/flash.swf");

Note

Special security settings are dependent on the value of src. If srcis given a remote URL, ToadMovie is
restricted to only remote URL loading.

Availability

Available in version 4.5 or newer.

pan()

pans the visible portion of the movie

Synopsis
pan(int x, int y, int mode);
Description

This function pans the visible portion of a zoomed-in movie to the specified x and y coordinates. Modes:
O=pixels, 1=% of window.

Example
myFlash.pan(10, 10, 1);

Availability

Available in version 4.5 or newer.

percentLoaded()

returns the percent already loaded

Synopsis
percentLoaded();
Description

This function returns the percent (as an integer) of the movie that has streamed into the browser at the
time the function is called.

Example
myText.data = myFlash.percentLoaded() + "%";

Availability

Available in version 4.5 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 105

Core DOM Reference: Flash

play()

play()

starts playing the movie

Synopsis
playQ;

Description

This function starts to play the movie.

Example
myFlash.play(Q);

Availability

Available in version 4.5 or newer.

reload()

reloads the swf file

Synopsis
reload();

Description

This function causes the swf file to reload.

Example
myFlash.reload(Q);

Availability

Available in version 4.5 or newer.

rewind()

returns to the first frame

Synopsis
rewind();

Description

This function returns to the first frame, making that the current frame.

Example
myFlash.rewind(Q);

Availability

Available in version 4.5 or newer.

setVariable()

sets the value of the variable

Synopsis

setVariable(string varName, string varValue);

106 | KONFABULATOR 4.5 REFERENCE MANUAL

Core DOM Reference: Flash setZoomRect()

Description

This function sets the value of the Flash variable varName to varValue.

Example
myFlash.setVariable("/:message", "Message to Flash");

Availability

Available in version 4.5 or newer.

setZoomRect()

zooms in on the specified rectangle
Synopsis

setZoomRect(int left, int top, int right, int bottom);
Description

This function zooms in on a rectangular area of the movie, specified by the supplied coordinates in TWIPS
(1440 units per inch). To calculate a rectangle, set ruler units to Points and multiply coordinates by 20 to
get TWIPS.

Example
myFlash.setZoomRect(Teft*20, top*20, right*20, bottom*20);

Availability

Available in version 4.5 or newer.

stop()

stops playing the movie

Synopsis
stop();

Description

This function stops playing the movie.

Example
myFlash.stop();

Availability

Available in version 4.5 or newer.

stopPlay()

stops playing the movie

Synopsis
stopPlay(Q);

Description

This function stops playing the movie.

% KONFABULATOR 4.5 REFERENCE MANUAL | 107

Core DOM Reference: Flash tCallFrame()

Example
myFlash.stopPlay(Q);

Availability

Available in version 4.5 or newer.

tCallFrame()

executes action in specified target and frameNumber

Synopsis
tCallFrame(string target, int frameNumber);

Description

In the timeline specified by target, this function executes the action in the specified frameNumber.

Example
myFlash.tCallFrame("/:action", 9);

Availability

Available in version 4.5 or newer.

tCallLabel()

executes action in specified target and label

Synopsis
tCallLabel(string target, string label);

Description

In the timeline specified by target, this function executes the action in the specified label.

Example
myFlash.tCallLabel("/:action", "actionLabel");

Availability

Available in version 4.5 or newer.

tCurrentFrame()

returns number of the current frame

Synopsis
tCurrentFrame(string target);
Description

Returns the number of the current frame for the target timeline. Returns O for frame 1 of the movie, 1 for
frame 2, and so on.

Example
alert(myFlash.tCurrentFrame("/:Moviel"));

108 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash tCurrentLabel()

Availability

Available in version 4.5 or newer.

tCurrentLabel()

returns label of the current frame

Synopsis
tCurrentLabel(string target);

Description

Returns the label of the current frame for the target timeline. If there is no current frame label, returns an
empty string.

Example
alert(myFlash.tCurrentlLabel("/:Moviel™));

Availability

Available in version 4.5 or newer.

tGotoFrame()

goes to the specified frame

Synopsis
tGotoFrame(string target, int frameNumber);
Description

In the timeline specified by target, this function activates frameNumber as the current frame. If the data
for the frame is not yet available, the player goes to the last available frame and stops, causing
unexpected results during playback. Use percentLoaded() to determine whether enough of the movie is
available before executing tGotoFrame().

Example
myFlash.tGotoFrame("/:Moviel", 35);

Availability

Available in version 4.5 or newer.

tGotoLabel()

goes to the specified label

Synopsis
tGotoLabel(string target, string label);

Description

In the timeline specified by target, this function goes to the specified frame label.

Example
myFlash.tGotolLabel("/:Moviel"”, "Frame20");

% KONFABULATOR 4.5 REFERENCE MAANUAL | 109

Core DOM Reference: Flash totalFrames()

Availability

Available in version 4.5 or newer.

totalFrames()

returns the total number of frames for the movie

Synopsis
totalFrames();

Description

This function returns the total number of frames for the movie.

Example
alert(myFlash.totalFrames());

Availability

Available in version 4.5 or newer.

tGetProperty()

returns the property value as a string

Synopsis
tGetProperty(string target, int property);
Description

In the timeline specified by target, this function returns a string indicating the value of property. For
property, enter the integer corresponding to the desired property. See Properties and Property Numbers
for a list of properties and their corresponding integers.

Example
myFlash.tGetProperty("mov", 3);

Availability

Available in version 4.5 or newer.

tGetPropertyAsNumber()

returns the property value as a number

Synopsis
tGetPropertyAsNumber(string target, int property);
Description

In the timeline specified by target, this function returns a number indicating the value of property. For
property, enter the integer corresponding to the desired property. See Properties and Property Numbers
for a list of properties and their corresponding integers.

Example
myFlash.tGetPropertyAsNumber('"mov", 3);

110 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash tGetPropertyNum()
Availability
Available in version 4.5 or newer.

tGetPropertyNum()

returns the property value as a string

Synopsis
tGetPropertyNum(string target, int property);
Description

In the timeline specified by target, this function returns a string indicating the value of property. For
property, enter the integer corresponding to the desired property. See Properties and Property Numbers
for a list of properties and their corresponding integers.

Example
myFlash.tGetPropertyNum("mov", 3);

Availability

Available in version 4.5 or newer.

tPlay()

plays the target timeline

Synopsis
getVariable(string target);

Description
Plays the timeline specified by target.

Example
myFlash.tPlay("/:Moviel");

Availability

Available in version 4.5 or newer.

tSetProperty()

sets the property value
Synopsis

tSetProperty(string target, int property, string value);
Description

In the timeline specified by target, this function sets property to value, which can be a string or a number.
For property, enter the integer corresponding to the desired property. See Properties and Property
Numbers for a list of properties and their corresponding integers.

Example
myFlash.tSetProperty("mov", 13, "spiffy");

% KONFABULATOR 4.5 REFERENCE MANUAL | 111

Core DOM Reference: Flash tSetPropertyNum()
Availability
Available in version 4.5 or newer.

tSetPropertyNum()

returns the number of the property value

Synopsis
tGetProperty(string target, int property, double number);
Description

In the timeline specified by target, this function sets the property value to number. For property, enter the
integer corresponding to the desired property. See Properties and Property Numbers for a list of
properties and their corresponding integers.

Example
myFlash.tSetPropertyNum("/:mov", 18, 5);

Availability

Available in version 4.5 or newer.

tStopPlay()

stops the target timeline

Synopsis
tStopPlay(string target);

Description
Stops the timeline specified by target.

Example
myFTash.tStopPlay("/:Moviel™);

Availability

Available in version 4.5 or newer.

version()

returns the Macromedia Flash version number

Synopsis

version();

Description

This function returns the version of the Macromedia Flash control. To get the major version number,
divide by 65536.

Example

if ((myFlash.version()/65536) == 9) {
alert("Version is Flash 9");

}

112 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Flash zoom()

Availability

Available in version 4.5 or newer.

zoom()

zooms the view

Synopsis
zoom(int percent);

Description

This function zooms the view by a relative scale factor. For example, zoom(50) doubles the size of the
objects in the view, and zoom(200) reduces the size of objects in the view by half.

Example
myFlash.zoom(90);

Availability

Available in version 4.5 or newer.

Properties and Property Numbers

The functions tSetProperty(), tGetProperty(), tGetPropertyNum() and tGetPropertyAsNumber() refer to
properties by their property number. The following tables list the available properties and their
corresponding property numbers.

Property Property Number

X POSITION (_x)
Y POSITION (_y)
X SCALE

Y SCALE
CURRENTFRAME
TOTALFRAMES
ALPHA
VISIBILITY
WIDTH

HEIGHT

ROTATION
TARGET
FRAMESLOADED
NAME
DROPTARGET

URL (_ur1)

O N[O AW N RO

=
o

=
[

=
N

=
w

'—l
N

=
(%}

Global Property Property Number
HIGHQUALITY 16

% KONFABULATOR 4.5 REFERENCE MANUAL | 113

Core DOM Reference: Frame hLineSize

FOCUSRECT 17
SOUNDBUFTIME 18
Frame

scrollable container object

Frame objects act as containers for other objects (similar to a div in HTML). As such, you can nest other
view objects inside them in the XML, as well as use JavaScript to place other objects inside them. When
moved, all subviews of a frame move. Similarly, when the opacity of a subview changes, so does the
effective opacity of everything in it. Unlike a div in HTML, frames automatically clip their contents to the
bounds of the frame.

Frames also allow scrolling. You can do so manually by adjusting the scro11X and scrol11Y attributes,
but you can also simply attach a scrollbar to a frame and have everything work automatically.

XML Name

<frame>

JavaScript Name
Frame

Attributes

hLineS1ize
hScrol1Bar
scrol1X
scrollY
vLineSize
vScroll1Bar

Functions

end()
home ()
TineDown()
TineLeft()
TineRight ()
TineUp ()
pageDown ()
pageLeft()
pageRight()
pageUp (O
updateScroll1Bars()

hLineSize

size of a line of data for use when scrolling

Description

The hLineS1ize attribute specifies how far a frame should scroll (in pixels) if the 1ineLeft() or
TineRight() functions are called. It is also factored in when the frame reacts to the mouse wheel (if a
scrollbar is attached). The default line size is 10 pixels.

Usage
JavaScript, XML

114 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Frame hScrollBar

Example
<frame name="myFrame" hLineSize="5"/>

myFrame.hLineSize = 5;
Availability

Available in version 3.0 or newer.

hScrollBar

horizontal scrollbar for this frame

Description

The hScrol11Bar attribute of a frame defines what scrollbar object should control the horizontal scrolling
for this frame. When expressed in XML, you specify the name of a <scro11bar> object you wish to bind
to the frame for its hScro11Bar. If the scrollbar object does not exist, an error appears in the Widget's
debug window.

Attaching a scrollbar automatically sets up communication between the frame and the scrollbar.

Usage
JavaScript, XML

Example
<frame name="myFrame" hScroll1Bar="my_scrollbar"/>
<scrollbar name="my_scrollbar" ... />

// in Javascript:
myFrame.hScrol1Bar = my_scrollbar;

Availability

Available in version 3.0 or newer.

scrollX

horizontal scrolling offset

Description

The scrol11X attribute allows you to specify the horizontal scrolling offset. For example, setting this
attribute to -10 scrolls a frame's contents to the left 10 pixels. Normally you don't need to modify this
attribute directly. Simply attaching a scrollbar to a frame causes this attribute to get updated as necessary
to scroll the contents.

Usage
JavaScript, XML

Example
<frame name="myFrame" scrol1X="-10"/>

myFrame.scrol1X = -10;

Availability

Available in version 3.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 115

Core DOM Reference: Frame scrollY

scrollY

vertical scrolling offset

Description

The scrol11Y attribute allows you to specify the vertical scrolling offset. For example, setting this attribute
to -10 scrolls a frame's contents upward 10 pixels. Normally you don't need to modify this attribute
directly. Simply attaching a scrollbar to a frame causes this attribute to get updated as necessary to scroll
the contents.

Usage
JavaScript, XML

Example
<frame name="myFrame" scrolly="-10"/>

myFrame.scrollY = -10;
Availability

Available in version 3.0 or newer.

vLineSize

size of a line of data for use when scrolling

Description

The vLineSize attribute specifies how far a frame should scroll (in pixels) if the 1ineUp() or
TineDown () functions are called. It is also factored in when the frame reacts to the mouse wheel (if a
scrollbar is attached). The default line size is 10 pixels.

Usage
JavaScript, XML

Example
<frame name="myFrame" vLineSize="5"/>

myFrame.vLineSize = 5;
Availability

Available in version 3.0 or newer.

vScrollBar

vertical scrollbar for this frame

Description

The vScrol11Bar attribute of a frame defines what scrollbar object should control the vertical scrolling for
this frame. When expressed in XML, you specify the name of the <scrol1bar> object you wish to bind

to the frame for its vScro11Bar. If the scrollbar object does not exist, an error will appear in the Widget's
debug window.

Attaching a scrollbar automatically sets up communication between the frame and the scrollbar.

116 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Frame end()

Usage
JavaScript, XML

Example
<frame name="myFrame" vScrollBar="my_scrollbar"/>
<scrollbar name="my_scrollbar" ... />

// in Javascript:
myFrame.vScrol1Bar = my_scrollbar;

Availability

Available in version 3.0 or newer.

end()

scrolls a frame to the bottom left

Synopsis
void Frame.end();

Description

This function scrolls a frame to the bottom of its contents.

Example
myFrame.end();

Availability

Available in version 3.0 or newer.

home()

scrolls a frame to the upper left

Synopsis
void Frame.home();

Description
This function sets the scro11X and scro11Y attributes to 0, O.

Example
myFrame.home() ;

Availability

Available in version 3.0 or newer.

lineDown()

scrolls a frame one line down

Synopsis

void Frame.lineDown(Q);

% KONFABULATOR 4.5 REFERENCE MANUAL | 117

Core DOM Reference: Frame lineLeft()

Description

This function scrolls a frame one line down by the amount specified by the frame's vLineSize attribute.

Example
myFrame.lineDown() ;

Availability

Available in version 3.0 or newer.

lineLeft()

scrolls a frame one line left

Synopsis
void Frame.lineLeft();

Description

This function scrolls a frame one line left by the amount specified by the frame's hLineS1 ze attribute.

Example
myFrame.lineLeft();

Availability

Available in version 3.0 or newer.

lineRight()

scrolls a frame one line right

Synopsis
void Frame.TineRight(Q);

Description

This function scrolls a frame one line right by the amount specified by the frame's hLineS1ze attribute.

Example
myFrame.lineRight();

Availability

Available in version 3.0 or newer.

lineUp()

scrolls a frame one line up

Synopsis
void Frame.TineUpQ);

Description

This function scrolls a frame one line up by the amount specified by the frame's vLineSize attribute.

Example
myFrame.TineUpQ);

118 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Frame pageDown()

Availability

Available in version 3.0 or newer.

pageDown()

scrolls a frame one page down

Synopsis
void Frame.pageDown();

Description

This function scrolls a frame one page down by the height of the frame minus one line height as specified
by vLineSize.

Example
myFrame.pageDown() ;

Availability

Available in version 3.0 or newer.

pageLeft()

scrolls a frame one page left

Synopsis
void Frame.pageleft();

Description

This function scrolls a frame one page left by the width of the frame minus one line height as specified by
hLineSize.

Example
myFrame.pageLeft();

Availability

Available in version 3.0 or newer.

pageRight()

scrolls a frame one page right

Synopsis
void Frame.pageRight(Q);
Description

This function scrolls a frame one page right by the width of the frame minus one line height as specified
by hLineSize.

Example
myFrame.pageRight();

Availability

Available in version 3.0 or newer.

% KONFABULATOR 4.5 REFERENCE MAANUAL | 119

Core DOM Reference: HotKey pageUp()

pageUp()

scrolls a frame one page up

Synopsis
void Frame.pageUpQ);
Description

This function scrolls a frame one page up by the height of the frame minus one line height as specified by
vLineSize.

Example
myFrame.pageUp();

Availability

Available in version 3.0 or newer.

updateScrollBars()

updates the scroll bars for a frame immediately

Synopsis
void Frame.updateScrollBars();
Description

This function allows you to ensure the scroll bars for a frame are up-to-date. You normally don't need to
call this function, as a frame's scroll bars are updated automatically. However, this is done lazily, i.e. they
aren't updated until absolutely necessary, typically right before the frame is drawn. But there are times
when it is necessary to update them immediately right after adding contents to the frame. For example,
you might need to know the new max value of one of the scroll bars.

This should not be called too frequently, as it does need to calculate the bounds of all of a frame's
children to do its work, which can be expensive.

Example

myFrame.updateScrol1Bar();
m = myFrame.hScrol1Bar.max; // now max is up-to-date

Availability

Available in version 4.0 or newer.

HotKey

block defining a hot key and associated default attributes

XML Name
<hotkey>

JavaScript Name
HotKey

Attributes
key
modifier
onKeyDown

120 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: HotKey key

onKeyUp

Description

The HotKey object allows your Widget to intercept a hot key action by the user. Hot keys are system-
level key triggers that allow Widgets to be accessed through the keyboard. For example, a search Widget
could be coded to come to the foreground with a sequence like Control+Shift+F2.

HotKey objects can also be created and destroyed dynamically using the JavaScript engine. This can be
useful if you allow the user to customize your Widget's hot keys.

Note: Some key combinations are reserved by the system (e.g., Alt+Tab on Windows OS or
Command+Tab on Mac OS X). On Mac OS X, if more than one Widget or application uses the
same hot key, then all receive a notification when the user presses those keys. On Windows, only
the first to try gets the hot key.

Example

<hotkey name="hkeyl" key="F4" modifier="control+shift"
onKeyDown="focusWidget("/>

hkeyl = new HotKey();

hkeyl.key = "F4";

hkeyl.modifier = "control+shift";
key

the name of the function key

Description
On Mac OS X, hot keys can be defined for any of the following keys:

Delete, End, Escape, ForwardDelete, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11,
F12, F13, F14, F15, F16, Help, Home, PageDown, PageUp, Space, Tab

On Windows OS the following keys can be used:

UpArrow, DownArrow, LeftArrow, RightArrow, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10,
F11, F13, F14, F15, F16, Insert, ForwardDelete, Home, End, PageUp, PageDown, Help,

Clear, PrintScreen, ScrolllLock, Pause, Enter, Return, Backspace, Delete, Space,
Tab, Escape

At least one modifier is required, which is Command on Mac OS X and Control on Windows OS by
default.

Hot keys can also be defined for any letter or punctuation key but two modifiers must be specified in this
case (to avoid confusing users by having familiar key combinations have unexpected effects).

JavaScript
myObjectName. key

Example
<hotkey name="hkeyl" key="F2"/>

hkeyl.key = "F2";

% KONFABULATOR 4.5 REFERENCE MANUAL | 121

Core DOM Reference: HotKey modifier

modifier

the modifier keys for the hot key

Description

The modifier attribute can be any combination of:

On Mac OS X: command, control, option, shift
On Windows OS: control, alt, shift

A modifier is always used and is Command on Mac OS X or Control on Windows OS by default.

Example
<hotkey name="hkeyl" key="Home" modifier="control+shift"/>

hkeyl.key = "Home";
hkeyl.modifier = "control+shift";

onKeyDown

the code that is activated when a hot key is pressed

Description

The code to be run when the hot key is pressed is specified with the onKeyDown attribute.

Example
<hotkey name="hkeyl" key="F10" modifier="control"
onKeyDown=
"print('Hotkey ' + event.keyString +
' pressed')"/>

hkeyl.onKeyDown="print('Hotkey
' pressed')";

+ event.keyString +

Platform Notes

Note, on Mac OS X it is generally best to attach key code to the onKeyUp action as that is what users
expect. However, note that only onKeyDown fires on Windows OS.

onKeyUp

the code that is activated when a hot key is released
Description
The code to be run when the hot key is released is specified with the onKeyUp attribute.

A common action to perform when a Widget's hot key is pressed is focusWidgetQ).

JavaScript
newObjectName = new HotKey()

Example

<hotkey name="hkeyl" key="F10" modifier="control"
onKeyUp="focusWidget()"/>

hkeyl.onKeyUp="focusWidget()";

122 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Core DOM Reference: Image clipRect
Platform Notes
This trigger is not available on Windows OS.

Image

image and associated default attributes

XML Name



myImage.onDragDrop = function(event) {handleDragDrop(); } ;

Availability

Available in version 1.0 or newer.

212 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference dragenter

dragenter

sent when an item is dragged into the object

Handler Name

onDragEnter

Description

The dragenter event is sent when the user has dragged an item from another application into the object.
This happens before the item is dropped (indeed it may not be dropped as the user can change their
mind).

This is useful for triggering a visual change of the object to indicate to the user that the dragged object
will be accepted or rejected if it is dropped. The type of data being dragged is contained in
event.dataType.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example

<image name="well"
onDragEnter= function(event) {highlightDropTarget(well); } />
well.onDragEnter = function(event) {highlightDropTarget(well); } ;

Availability

Available in version 1.0 or newer.

dragexit

sent when an item is dragged out of the object

Handler Name
onDragExit

Description

The dragexit event is sent when the user has dragged an item from another application into the object
and then out again.

This is useful for undoing things that were done in response to dragenter, such as removing a drag
highlight effect.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example

<image name="well"
onDragExit="unhighlightDropTarget(well)"/>

well.onDragExit = function(event) {unhighlightDropTarget(event); } ;

Availability

Available in version 1.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 213

Events: Event Reference fscommand

Flash Events

This section provides details of all Flash events sent by Konfabulator.

Events
fscommand
fsreadystate

fscommand

sent when an FsCommand action occurs

Handler Name

onFsCommand

Description

The onFsCommand event is sent when an FsCommand action occurs in a movie with a URL starting with
FsCommand. This is useful for creating a response to a frame or button action in a Flash movie. The
argument type is string.

When the event is sent, the command and argument can be retrieved from the event via the command
and arguments properties.

Sent To
Flash objects.

Example
<flash name="myFlash" src="file">
<onFsCommand>
if (event.command == "myCommand")
{
//do what I say.
myJsFunction (event.arguments);
3
</onFsCommand>
</flash>
Note

Special security settings are dependent on the value of src. If srcis given a remote URL, fsCommand is
disabled.

Availability

Available in version 4.5 or newer.

fsreadystate

sent when an FSReadyState event occurs

Handler Name

onFsReadyState

214 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference keydown

Description

The onFsReadyState event is sent during the src file load, returning one of the following values:
O=Loading, 1=Uninitialized, 2=Loaded, 3=Interactive, 4=Complete. The resulting value can be retrieved
from event.readyState. Note that some flash files fire the Complete event continuously. Code accordingly.

Sent To
Flash objects.

Example
<flash name="myFlash" src="file">
<onFsReadyState>
if (event.readyState == 4)

{
//do what I say.

}
</onFsReadyState>

</flash>
Availability

Available in version 4.5 or newer.

Keyboard Events

This section provides details of all Keyboard events sent by Konfabulator.

Events
keydown
keypress
keyup

keydown

sent when a key is pressed

Handler Name

onKeyDown

Description

The keydown event is sent when a key is pressed that is specified with the onKeyDown attribute. A
keydown event is a raw keyboard event. It contains the keyCode of the key that was pressed. To get the
text that was generated, listen for textinput events instead.

Sent To

TextArea and Window objects.

Example

<textarea data="Type Stuff Here" name="typomatic"
onKeyDown="print (event.keyCode)"/>
typomatic.onKeyDown = "keypressed = true";

% KONFABULATOR 4.5 REFERENCE MANUAL | 215

Events: Event Reference keypress

keypress

sent after a keydown event

Handler Name

onKeyPress

Description

The keypress event is sent from TextArea objects. It allows you to potentially stop a key from reaching
the textarea by calling rejectKeyPress (). The most typical use of this type of behavior is to intercept
the enter key in a text area to mean 'execute' or 'search' rather than it just adding a return to the text
area.

This is an older event, and in version 4.5 or later, is largely unneeded, as you can instead call
preventDefault() on a keydown or textinput event.

This is useful for performing validation of text entry. Normally any key pressed is processed by the system
and the appropriate change is made to the text area (adding a character, deleting a word, etc.). You can
override this behavior by calling the textarea method rejectKeyPress(), which causes the key press
to be ignored. The value of the key pressed is always available in system.event.key.

Sent To

TextArea objects.

Example
<textarea name="tal" onKeyPress="handleKey(event)">
<script>
function handleKey(event)
{
// Convert input to uppercase
var key = event.key;
if (key.charCodeAt(0) >= "A".charCodeAt(0) &&
key.charCodeAt(0) &1t;= "z".charCodeAt(0))
{
// Tell the text area to ignore this keyPress
tal.rejectKeyPress();
// Append an upper case copy of the key pressed
tal.replaceSelection(key.toUpperCase());
}
</script>
</textarea>

tal.onKeyPress = handleKey;

keyup

sent when a key is released

Handler Name

onKeyUp

Description

The keyup event is sent when a key is pressed that is specified with the onKeyUp attribute.

216 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference contextmenu

Sent To

TextArea and Window objects.

Example

<textarea data="Type Stuff Here" name="typomatic"
onKeyUp="print event.keyCode "/>

typomatic.onKeyUp = "keypressed = true";

Miscellaneous Events

This section provides details of all miscellaneous events sent by Konfabulator.

Events
contextmenu
dockclosed
dockopened
firstdisplay
gainfocus
idle
konsposeactivated
konsposedeactivated
load
losefocus
preferencescancelled
preferenceschanged
screenchanged
timer
timerfired
unload
valuechanged
wakefromsleep
wilTlchangepreferences
yahoologinchanged

contextmenu

sent when a context menu is about to appear

Handler Name

onContextMenu

Description

The simplest way to specify context menu items that get added to the standard context menu for a
Widget is to use the contextMenuItems tagin the XML. However, for those Widgets that need to build
their items dynamically, the onContextMenu handler is the hook to do so. When the menu is about to be
presented, this is called for all elements under the mouse from front to back in the view order until some
view responds. The first element to capture the event will halt the propagation of the event, except for
the window object, which will always receive this event.

To build the context menu items, create an array of MenuItem objects and set the contextMenuItems
attribute to the array. See Menultem for a description of the items.

Sent To

Canvas, Frame, Image, Text, TextArea, and Window objects.

% KONFABULATOR 4.5 REFERENCE MANUAL | 217

Events: Event Reference dockclosed

Example

<onContextMenu>

var items = new Array();

items[0] = new MenuItem();

items[0].title = "This is the title";

items[0].enabled = false;

items[0].checked = true;

items[0].onSelect = function(event) {alert('you chose it!'); } ;

items[1] = new MenuItem();
items[1l].title = "This is the second title";
items[1].onSelect = function(event) {beep(Q); 1} ;

myImage.contextMenultems = 1items;
</onContextMenu>

Availability

Available in version 2.0 or newer.

dockclosed

sent when the dock was just closed by the user

Handler Name

onDockClosed

Description

This event is sent whenever the dock is closed by the user. If your Widget uses the setDockltem API, you
can use this as an indication that you should no longer call that function, as the dock is no longer around.
If you are using a timer to periodically set your dock item, you should stop the timer to avoid using
unnecessary CPU time.

Sent To
Widget object.

Example
widget.onDockClosed= function(event) {stopDockItemTimer()};

Availability

Available in version 4.0 or newer.

dockopened

sent when the dock was just opened by the user

Handler Name
onDockOpened

Description

This event is sent whenever the dock is opened by the user. If your Widget uses the setDockltem API, you
can use this as an indication that is now OK to start calling that API. Otherwise, if the dock is not open,
setDockltem will waste CPU time.

218 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference firstdisplay

Sent To
Widget object.

Example
widget.onDockOpened= function(event) {setMyDockItem()};

Availability

Available in version 4.0 or newer.

firstdisplay

sent the very first time a window is displayed

Handler Name
onFirstDisplay

Description

The very first time a window is ever shown in a Widget (i.e., we see that it has no saved preferences for
position), the firstdisplay event is sent to the window. This allows a Widget to decide where it should
appear the very first time the Widget is launched.

Sent To

Window object.

Example

<onFirstDisplay>
setInitialPosition();
</onFirstDisplay>

Remember, this is only sent the first time the window appears. After the prefs are saved for that window,
you won't receive this message again.

Availability

Available in version 2.0 or newer.

gainfocus

sent when an element has acquired user focus

Handler Name

onGainFocus

Description

This event allows you to detect when a window or text area has gained focus. For a window, this means
it's become the active window. For a text area, it means the text area is now the current keyboard focus.

Sent To

Window, TextArea

Example
widget.onGainFocus= function(event) {print('Focused')};

% KONFABULATOR 4.5 REFERENCE MANUAL | 219

Events: Event Reference idle

idle

sent in response to the onldle trigger

Handler Name
onldle

Description

This attribute allows you to change what gets executed for a Widget by the onldle trigger. The onldle
handler is called every 0.2 seconds.

onldle is considered deprecated. You should instead use Timer objects, as they are far more flexible.
Sent To
Widget object.

Example
widget.onIdle = function(event) {print('onIdle')};

Availability

Available in version 4.0 or newer.

konsposeactivated

sent when heads-up display is entered

Handler Name

onKonsposeActivated

Description

This event is sent when "heads-up display” mode is entered. Konsposé was the prior name for the heads-
up display feature of the product.

Sent To
Widget object.

Example
widget.onKonsposeActivated = function(event) {print('heads up display entered'

)};
Availability

Available in version 4.0 or newer.

konsposedeactivated

sent when heads-up display is exited

Handler Name

onKonsposeDeactivated

Description

This event is sent when “heads-up display” mode is exited. Konsposé was the prior name for the “heads-
up display” feature of the product.

220 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference

Sent To
Widget object.

Example

load

widget.onKonsposeDeactivated = function(event) {print('heads up display exited'

)};
Availability

Available in version 4.0 or newer.

load

sent when a widget is first loaded

Handler Name

onlLoad

Description

This event is sent when your widget is first loaded. Since onLoad happens early in your Widget's lifetime,
if you wish to set this programmatically, you will need to set this attribute in a <script> block. Otherwise,
it's usually easiest to set your onLoad handler in an XML <action> block.

Sent To
Widget object.

Example

<script>
widget.onLoad = doOnlLoad;
</script>

Availability

Available in version 4.0 or newer.

losefocus

sent when an element has lost user focus

Handler Name

onLoseFocus

Description

This event allows you to detect when a window or text area has lost focus. For a window, this means it's
become inactive. For a text area, it means the text area is no longer the current keyboard focus. You can
use this to clear any focus adornment you might draw around the text area to indicate focus. Only
editable text areas get the keyboard focus, and as such this action is only called for an editable text area.

Sent To

Window, TextArea

Example

<textarea data="Type Stuff Here" name="typomatic"
onLoseFocus="print('I Tost focus!');"/>

o,

KONFABULATOR 4.5 REFERENCE MANUAL

221

Events: Event Reference preferencescancelled

typomatic.onLoseFocus = function(event) { print('focus Tost'); }

preferencescancelled

sent when the preferences dialog is cancelled

Handler Name

onPreferencesCancelled

Description

This event is sent when the user presses cancel in the preferences dialog. It is used to balance the
willchangepreferences event, and allows you to undo an action performed during
willchangepreferences.

Sent To
Widget object.

Example
widget.onPreferencesCancelled = function(event) { print('prefs cancelled') };

Availability

Available in version 4.5 or newer.

preferenceschanged

sent when the preferences dialog is confirmed
Handler Name

onPreferencesChanged

Description

This event is sent after the Preferences dialog is closed when the user presses OK. If the user cancels out
of the Preferences dialog, the preferencescancelled event is sent instead.

Sent To
Widget object.

Example
widget.onPreferencesChanged = function(event) { print('prefs changed') };

Availability

Available in version 4.0 or newer.

screenchanged

sent when screen geometry changes

Handler Name

onScreenChanged

222 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference timer

Description

This event is sent whenever the main screen changes its configuration (resolution, size, etc.).

Sent To
Widget object.

Example
widget.onScreenChanged = function(event) {print('screen changed')};

Availability

Available in version 4.0 or newer.

timer

sent in response to the onTimer trigger

Handler Name

onTimer
Description
This event is sent when the global timer mechanism fires.

There can only be one onTimer trigger per Widget. For multiple timers running at different frequencies,
use the Timer object. This attribute is considered deprecated and is only here for completeness.

Sent To
Widget object.

Example
widget.onTimer = function(event) {print('"timer fired')};

Availability

Available in version 4.0 or newer.

timerfired

sent when a timer fires

Handler Name

onTimerFired

Description

This event is sent when a timer fires.

Sent To

Timer objects.

Example

<timer name="myTimer"
onTimerFired="alert("hello!"');"/>

myTimer.onTimerFired = "alert('fired!');";

% KONFABULATOR 4.5 REFERENCE MANUAL | 223

Events: Event Reference unload

Availability

Available in version 2.0 or newer.

unload

sent when the widget is being shut down

Handler Name

onUnToad
Description
This event is sent right before your Widget is terminated.

You should not perform any lengthy operations in this trigger as Widgets are encouraged to shut down
quickly (an example of a lengthy operation would be retrieving something from the network).

Sent To
Widget object.

Example
widget.onUnload = disconnectMyCOMObjects;

Availability

Available in version 4.0 or newer.

valuechanged

sent when a scrollbar’s value changes

Handler Name

onValueChanged

Description

This event is sent whenever a scrollbar's value changes.

If you attach a scrollbar to a frame, you rarely need to specify anything for this attribute. The frame
automatically reacts to scrollbar changes.

Sent To

Scrollbar

Example

<scrollbar name="sb">
<onValueChanged>
print("Whoa! value is now
</onValueChanged>
</scrollbar>

+ this.value);

Availability

Available in version 3.0 or newer.

224 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference wakefromsleep

wakefromsleep

sent when the computer wakes from sleep mode

Handler Name

onWakeFromSleep

Description

This event is sent when the computer wakes from sleep mode.

In version 3.0 or newer, timers are stopped when the computer goes to sleep and are not restarted until
onWakeFromSleep is called. There is usually a delay of about 15 seconds between when the computer
wakes and when this event is sent. This is to give the networking stack time to recover before the Widget
timers start to function again.

Sent To
Widget object.

Example
widget.onWakeFromSleep = handleWake;

Availability
Available in version 1.5 or newer.

Version Notes

In version 3.0 or newer, timers are stopped when the computer goes to sleep and are not restarted until
onWakeFromS1eep is called.

willchangepreferences

sent right before the preferences dialog is opened

Handler Name

onWillChangePreferences
Description

This event is sent right before the Preferences dialog is opened.
Sent To

Widget object.

Example
widget.onWillChangePreferences = handleWillChangePrefs;

Availability

Available in version 4.0 or newer.

yahoologinchanged

sent when the Yahoo! login status changes

Handler Name
onYahoolLoginChanged

% KONFABULATOR 4.5 REFERENCE MANUAL | 225

Events: Event Reference click

Description

This event is sent when the login state changes (i.e., either the user has logged in or out of their Yahoo!
account).You generally only need to listen to this event if you use the Yahoo! login APIs.

Sent To
Widget object.

Example
widget.onYahoolLoginChanged = handlelLoginChanged;

Availability

Available in version 4.0 or newer.

Mouse Events

This section provides details of all Mouse events sent by Konfabulator.

Events
click
mousedown
mousedrag
mouseenter
mouseexit
mousemove
mouseup
mousewheel
multiclick

click

sent when a single click occurs

Handler Name
onClick

Description

This event is sent when the user clicks in an object. This is the best way to track a true click as it also
guarantees the mouse was released in the object this handler is attached to.

Applying an onC11ck handler of any kind will cause the mouse cursor to change to a hand icon.
Currently, this cannot be disabled.

Sent To

Canvas, Frame, Image, Text, TextArea, and Scrol1Bar objects.

Example
<image src="..." onClick="print('clicked')"/>

myImage.onClick = function(event) { handleClick(Q; } ;

Availability

Available in version 4.0 or newer.

226 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference mousedown

mousedown

sent when the mouse button is pressed inside the object

Handler Name

onMouseDown

Description

The mousedown event is sent when the user presses the mouse button down within the object.

This is useful for creating customized buttons that respond visually to a user's click.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example
<image onMouseDown="beep();"/>

myImage.onMouseDown = function(event) {beep(; } ;
Availability

Available in version 1.0 or newer.

mousedrag

sent when the mouse moves inside an object and the mouse button is down

Handler Name

onMouseDrag

Description

The mousedrag event is sent when the user moves the mouse over an object with the mouse button held
down.

In version 4.0 and newer, this is the replacement for the older onMouseMove attribute, and
onMouseMove is a true mouse move event, i.e. the mouse moves with no buttons pressed. See
mousemove for more information.

The mouse location is available in the global system.event object.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example
<image onMouseDrag="moveSliderThumb();"/>

myImage.onMouseDrag = function(event) {moveSliderThumb(); 1} ;

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 227

Events: Event Reference mouseenter

mouseenter

sent when the mouse enters an object

Handler Name
onMouseEnter

Description
The mouseenter event is sent when the user has moved the cursor within the object.
This is useful for triggering a visual change of the object based on a rollover state.
This is equivalent to the onmouseover event in a browser.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example
<image onMouseEnter="print("Mouse entered!");"/>

myImage.onMouseEnter = function(event) {handleEntered(); } ;

Availability

Available in version 1.0 or newer.

mouseexit

sent when the mouse exits an object

Handler Name

onMouseExit

Description

The mouseexit event is sent when the user has moved the cursor from within the object to outside the
object.

This is useful for triggering a visual change of the object based on a rollover state.
This is equivalent to the onmouseout event in a browser.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example
<image onMouseExit="handleMouseExit();"/>

myImage.onMouseExit = function(event) {handleMouseExit(); } ;

Availability

Available in version 1.0 or newer.

228 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference mousemove

mousemove

sent when the mouse moves within an object

Handler Name

onMouseMove
Description
The mousemove event is sent when the user drags the mouse cursor within the bounds of an object.

This attribute is called in two different situations depending on the value of your Widget's minimum
platform version. With minimum platform versions under 4.0 or no minimum version set, this handler is
called when the mouse moves over the object and the mouse button is down. This is called a drag event.

With minimum platform version of 4.0 and newer, this handler is called when the mouse moves over your
object and the mouse button is up. This is called a simple move event.

This change in behavior was instituted in version 4.0 to allow us to have a true mouse move event and to
fix the terminology. Handling mouse drags can be handled with the onMouseDrag handler, introduced in
that version of the engine.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example

<image name="myImage" onMouseMove=
"print(system.event.x + ", " + system.event.y);"/>

myImage.onMouseMove = function(event) handleMouseMove(); } ;
Availability

Available in version 1.0 or newer.

mouseup

sent when the mouse button is released in an object

Handler Name

onMouseUp

Description
The mouseup event is sent when the user has released the mouse after having it down within the object.
This is useful for triggering a visual change of the object based on a pressed state.

Note: onMouseUp triggers even if the mouse is not inside the object when the mouse is released. To
create buttons that have a standard button tracking behavior, you must use all four of
onMouseDown, onMouseEnter, onMouseExit and onMouseUp to track the state of the mouse
relative to your button. You can see an example of this behavior in the source of the standard
Calendar Widget.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

% KONFABULATOR 4.5 REFERENCE MANUAL | 229

Events: Event Reference mousewheel

Example
<image name="myImage" onMouseUp="handleOnMouseUp();"/>

myFrame.onMouseUp = function(event) {handleOnMouseUp(); } ;

Availability

Available in version 1.0 or newer.

mousewheel

sent when the mouse wheel is moved while over an object

Handler Name

onMouseWheel

Description

The mousewheel event is sent when the user moves the mouse wheel while hovering over the object. The
delta can be gotten from system.event.scrol1Delta.

You normally don't need to use this hook, as when a scrollbar is attached to a frame, the mouse wheel is
handled automatically.

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example

<frame name="myFrame" onMouseWheel=
"hand1leOnMouseWheel (event.scrol1Delta);"/>

myFrame.onMouseWheel = myScrollWheelHandler ;

Availability

Available in version 3.0 or newer.

multiclick

sent when a multiple click occurs

Handler Name
onMultiClick

Description

You can easily trap double-clicks (triple-clicks, etc.) by responding to the mul1tic1ick event. When the
event is sent, you can inspect event.c1ickCount to see what the value is. It will always be 2 (for a
double-click) or greater.

It is also possible to inspect the event.c1ickCount in an onMouseUp handler as well in lieu of listening to
muTticlick events. However, the advantage to using multiclick is that it does not interfere with
window dragging the way that mouseup does, i.e., a mouse up handler on an image prevents a window
from being dragged if you click that image. If your image only needs to respond to multiclicks, you can
respond to multiclick and the Widget can still be dragged as usual.

230 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference textinput

Sent To

Canvas, Frame, Image, Text, TextArea, Scrol1Bar, and Window objects.

Example

<onMul1tiClicks>
if (system.event.clickCount == 2)
alert("Double Click!");
</onMultiClick>

myImage.onMultiClick= function(event) {handleMultiClick(); } ;

Availability

Available in version 3.0 or newer.

Text Events

This section provides details of all Text events sent by Konfabulator.
Events
textinput

textinput

sent when a keydown or series of keydowns generates textcode activated when a key is pressed

Handler Name

onTextInput

Description

This event is sent when the user types something on the keyboard that generates text. Not all keydown
events generate a character, so if you really care about exactly what was typed, you can intercept this
event.

Sent To
TextArea and Window objects.

Example
widget.onTextInput = function(event) { print(event.data +

was input!") };
Availability

Available in version 4.5 or newer.

Web Events

This section provides details of all Web events sent by Konfabulator.

Events
webalert
webconfirm
webcreatewindow
webexception
webTinkc1icked
webpageloadcomplete
webprompt

% KONFABULATOR 4.5 REFERENCE MANUAL | 231

Events: Event Reference webalert

webresourceloadcomplete
webresourcerequested
webstatusbarchanged
webtitlechanged
weburlchanged

webalert

sent when an alert has been raised by a web page

Handler Name
onWebAlert

Description

When a web page requests an alert, this event is sent. The alert message in the alert can be accessed via
the data property of the event object.

If the default is not handled, a simple alert dialog is created automatically.

Sent To
Web objects.

Example
web.onConfirm = function() { alert(event.data); }

Availability

Available in version 4.5 or newer.

webconfirm

sent when a webpage request confirmation is completed

Handler Name
onWebConfirm

Description

When a web page requests a prompt, this event is sent. The prompt text can be accessed via event.data.
The result is placed in the confirmResult property of the event object.

If the default is not handled, a simple confirm dialog is created automatically.

Sent To
Web objects.

Example

web.onWebConfirm = function()
{ event.confirmResult = myConfirmResult(event.data); }

Availability

Available in version 4.5 or newer.

232 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference webcreatewindow

webcreatewindow

sent when a new window is requested

Handler Name

onWebCreateWindow

Description

When a web page wants to create a new window this event is sent. The function must set a new Web
instance in the browserResult property of the event object. Consequently the ur1 is set on that object
and will run on its own. You can wrap that Web object in another window and in whatever chrome fits
your application, and the instance is used there.

The default is to disallow creation of new windows.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

webexception

sent when a web page causes an exception to be thrown

Handler Name

onWebException

Description

This event is sent when a Javascript exception occurs in a web page. The exception thrown is accessible
via the exception property of the event object.

Sent To
Web objects.

Example
web.onWebException = function() { Tog("Caught exception:

+ event.exception); }

Availability

Available in version 4.5 or newer.

weblinkclicked

sent when a non-JavaScript link is clicked

Handler Name
onWebLinkC1icked

Description

If an anchor has an href that changes the base document, then this event is sent to handle it. The ur1is
accessible via the data property of the event.

If your intention is for the web viewer to change base documents, then the proper response is:

% KONFABULATOR 4.5 REFERENCE MANUAL | 233

Events: Event Reference webpageloadcomplete

myWebInstance.url = event.data;

If you override this, you should call event_preventDefault(). Otherwise, the default action will
execute, which is equivalent to:

openURL(event.data);

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

webpageloadcomplete

sent when a base document and its media have been fully loaded

Handler Name

onWebPagelLoadComplete

Description

This is meant to only advise of the document fully loading. This can be interesting for giving a completely
loaded indicator.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

webprompt

sent when a web page elicits input from a user

Handler Name

onWebPrompt

Description

When a web page requests a prompt, this event is sent. The prompt string can be accessed via
event.data.

The default value is placed in event.promptResult. You may modify this with what the user inputs,
otherwise the default value is used as the input value. Finally, you must set event.confirmResult to
true if the dialog was confirmed; otherwise false.

Sent To

Web objects.

Example

web.onWebPrompt = function(event)
{ event.confirm.Result = myConfirmFunction(event.data); }

234 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Reference webresourceloadcomplete

Availability

Available in version 4.5 or newer.

webresourceloadcomplete

sent when a resource has completed loading
Handler Name

onWebResourcelLoadComplete

Description

Like webResourceRequested, the URL in question can be accessed via event.data. Additionally, you can
find out the success of the load via the statusCode property of the event object.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

webresourcerequested

sent when a resource is about to be requested

Handler Name

onWebResourceRequested

Description

The URL in question can be accessed via the data property of the event object. This is meant to only
advise that media has been requested. This can be interesting for displaying a list of all media on the
current document.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

webstatusbarchanged

sent when the status bar text is changed

Handler Name
onWebStatusBarChanged

Description

You can access the current status bar text via the statusBar attribute, or the data property of the event
object.

Sent To
Web objects.

% KONFABULATOR 4.5 REFERENCE MANUAL | 235

Events: Event Functions webtitlechanged

Availability

Available in version 4.5 or newer.

webtitlechanged

sent when the title of a document changes

Handler Name
onWebTitTeChanged

Description

You can access the current title via the title attribute, or the data property of the event object.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

weburlchanged

sent whenever the base url of a document changes

Handler Name
onWebURLChanged

Description

This can happen either by explicitly setting the url attribute, or via a redirect. This can be used to allow for
a history stack.

You can access the current url via the url attribute, or the data property of the event object.

Sent To
Web objects.

Availability

Available in version 4.5 or newer.

Event Functions

This section describes the global functions that are related to events.

getGlobalMousePosition()

returns the current mouse position in global coordinates

Synopsis
Point getGlobalMousePosition();

236 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Events: Event Functions weburlchanged
Description

This function is used to return the current mouse position in global (screen) coordinates. You can use this

to find out where the mouse is when you might otherwise not be able to tell, such as during a keyboard
event.

If you wish to know the current mouse position relative to a specific window, use
window.getCurrentMousePosition()

Example

var myPt = getGlobalMousePosition();
print('mouse is at ', myPt.x, myPt.y);

Availability

Available in version 4.5 or newer.

% KONFABULATOR 4.5 REFERENCE MAANUAL | 237

Events: Event Functions weburlchanged

238 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference

These attributes and functions give JavaScript code access to various system settings and hardware
information.

COM

functions to call COM interfaces on Windows

Functions
COM. connectObject
COM.createObject
COM.disconnectObject

Description

The COM obiject is an interface to enable your Widgets to call a COM interface in the system. For
example, you could use it to talk to iTunes (if you didn't use our built-in support), MSN Messenger,
Outlook, etc.

You can connect to any COM object using COM. createObject(progID|CLSID). The COM interface
does need to have sufficient type info supplied. At present we cannot support lazy binding to methods,
etc., so all type information needs to be provided up front (i.e., the ITypeInfo interface needs to return
the appropriate info so we can perform our introspection to obtain info about things such as the number
of parameters and their types).

Example

This example prints some info from iTunes:

var it = COM.createObject("iTunes.Application");
track = it.CurrentTrack;

print(track.Album);
print(track.Artist);

Here's another example that prints some info from MSN Messenger:

messenger = COM.createObject("Messenger.UIAutomation");

contacts = messenger.MyContacts;

num = contacts.Count;

for (i =0; 1 < num; i++) {
contact = contacts.Item(i);
print(" " + contact.FriendlyName +

+ contact.Status);

}

This code works only when logged in to MSN Messenger. Things like the status of a contact can be found
out using the Web, MSDN, etc.

It is also possible to hook up an “event sink.” This allows you to have an application inform you when
things change (e.g., buddy status) as opposed to having to poll for that information.

COM. connectObject tells the Widget Engine that you want to be informed of object events.
COM.d1isconnectObject tells us that you no longer wish to be informed of those events. You should
always disconnect a sink when you are done with it.

% KONFABULATOR 4.5 REFERENCE MANUAL | 239

System DOM Reference: COM COM.connectObject

And finally, a note on object references. Be sure to clear your references out to null whenever you know
you are through with an interface. This is because COM requires a certain amount of reference counting
to work, and JavaScript's garbage collection mentality can confuse it a bit. For those reasons, it's good to
always clear your references to interfaces (COM objects) you've gotten when you are done with them.
It's not strictly required, but it prevents potential confusion later.

Availability
COM support is available in version 2.0 and later.

COM. connectObject
COM.createObject
COM.disconnectObject

COM.connectObject

connects an event sink to listen to an object's events

Synopsis
COM. connectObject(object, prefix)

Description

This function allows you to connect to an object created or otherwise received from using the COM
interface to listen to events. Many objects in the COM world have an event interface that you can listen
to for events. For example, you can connect to the main iTunes application object and it will tell you when
the player starts and stops, as well as when the application is about to quit.

The object you pass in must have been either created through COM.createObject or gotten through a
call to a COM object that you created (e.g., if you receive a track from iTunes, you can use that iTunes
track, provided it has an event interface).

For the second parameter, you pass a prefix for a function that will be called when an event occurs. For
example, the iTunes COM interface sends out OnPlayerPlayEvent when the player starts a track,
passing it the track that it started to play. The prefix helps us find the function to call. When the event
occurs, it tries to call a function called <prefix>0nPTayerPlayEvent(). The following example shows
us listening to that event.

Example
var iTunesObj = COM.createObject("iTunes.Application");

COM. connectObject(iTunesObj, "iTunes_");

function iTunes_OnPlayerPlayEvent(track)
{

}

When you are done with an object and listening to its events, you should take care to call
disconnectObject.

print("Started to play " + track.Name);

There can be only one established event sink per object at a time.

Notes

This function throws an exception if it cannot successfully connect. It is recommended to call this inside a
try/catch handler.

240 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Filesystem COM .createObject

Our function is called iTunes_OnPlayerPlayEvent, which is the combination of the prefix we specified,
and the name of the COM method which gets invoked. Also note that we were passed a parameter that
is another COM object representing the track. From there we are able to reference its Name attribute.

Availability

Available in version 2.0 or newer.

COM.createObject
creates a COM object using proglID or CLSID

Synopsis
COM.createObject(progID | CLSID)
Description

This is the main place to start your romp through the COM forest. The trick here is to find out what
interfaces you can call. Unfortunately, there's no simple way to figure this out short of looking in a COM
browser and using trial and error. Some information is available on the Web (try a quick Yahoo! search for
things like "automation,” “COM," and your favorite application). You can also use regedit to look for
proglID. But really, the COM browser provided by Visual Studio is probably the best way (and cheapest if
you already have Visual Studio).

Example
var iTunesObj = COM.createObject("iTunes.Application");

Availability

Available in version 2.0 or newer.

COM.disconnectObject

disconnects an event sink previously established with connectObject

Synopsis
COM.disconnectObject(object)
Description

After you are done with an event sink created with a call to connectObject, you should call this function
to break the connection. In some cases, it's important that you do this before releasing the main COM
object due to the way some applications are written.

Example
COM.disconnectObject(iTunesObj);

Availability

Available in version 2.0 or newer.

Filesystem

gets information from and interacts with the filesystem

Synopsis
file system

% KONFABULATOR 4.5 REFERENCE MANUAL | 241

Description

The file system object provides access to the underlying files and directories of the system on which

System DOM Reference: Filesystem

the Widget is running. See below for details of the individual functions and attributes.

Attributes

filesystem.

Functions

filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
filesystem.
.move()

.moveToRecycleBin() filesystem.moveToTrash()
.open()

.openRecycleBin() filesystem.openTrash()

filesystem
filesystem
filesystem
filesystem

filesystem.
filesystem.
filesystem.
filesystem.
writeFile()
filesystem.

filesystem

volumes

copyQ

createDirectory()

emptyRecycleBin() filesystem.emptyTrash()
getDirectoryContents()

getDisplayName()

getFileInfo()

getMD5()

getRecycleBinInfo() filesystem.getTrashInfo()
isPathAllowed ()

itemExists()

readFile()
reveal O
remove ()
unzipQ

zipQ

filesystem.volumes

Platform Notes

Note that in version 3.1 and later, the version for Windows OS does not allow the filesystem object to
change anything inside C:\Windows (or whatever your Windows directory is set to). The Mac version
gets this behavior for free due to file permissions.

Availability

The filesystem object is available in version 1.8 or newer.

filesystem.volumes

array of currently mounted volumes

Description

The volumes attribute of the filesystem object contains an array of all the currently mounted volumes.
Each entry in the array is a small object with the following attributes:

path
freeBytes
totalBytes

You can use these in concert with functions like bytesToUIString or filesystem.getDisplayName

Example

vols = filesystem.volumes;
for (a in vols)

{

242 | KONFABULATOR 4.5 REFERENCE MANUAL

System DOM Reference: Filesystem filesystem.copy()

print("Volume +
filesystem.getDisplayName(vols[a].path) +
" (path " + vols[a].path + ") has a capacity of " +
bytesToUIString(vols[a].totalBytes) + " and " +
bytesToUIString(vols[a].freeBytes) + " free.");
}

Availability

Available in version 2.0 or newer.

filesystem.copy()

copies files or directories to a destination

Synopsis
filesystem.copy(path, destination);
Description

This function allows you to copy one or more files or directories to a specified destination directory. The
source can be a single path, or an array of paths.

If copying one file, the destination need not exist. In this case, it is assumed the destination is a new file
name for the file. If the destination does exist, it is assumed it specifies a directory in which to copy the
new file.

If copying multiple files, the destination must be an existing directory.

This function returns true if successful, false otherwise.

Example

// to copy a file to a folder
filesystem.copy("myfile.txt", "/Users/evoas");

// to duplicate a file
filesystem.copy("myfile.txt", "myfile_copy.txt");

Availability

Available in version 2.0 or newer.

filesystem.createDirectory()

creates a new directory

Synopsis
filesystem.createDirectory(path);

Description

This function creates a new directory. It does not create intermediate directories (i.e., it does not do the
equivalent of mkdir -p).

Currently, directories can only be created inside your Widget's WidgetData folder.

Example

// determine path
path = system.widgetDataFolder + "/test";
filesystem.createDirectory(path);

% KONFABULATOR 4.5 REFERENCE MIANUAL | 243

System DOM Reference: Filesystem filesystem.emptyRecycleBin() filesystem.emptyTrash()
Availability
Available in version 4.0 or newer.

filesystem.emptyRecycleBin()
filesystem.emptyTrash()

empties the system trash

Synopsis
filesystem.emptyRecycleBin()
filesystem.emptyTrash()

Description

This function empties the trash/recycle bin. If the user has their settings set to see the warning dialog, it
comes up automatically.

The function has two names to reflect the different terms used on the two platforms, Windows OS and
Mac OS X.

Example
fileystem.emptyTrash();

Availability

Available in version 2.0 or newer.

filesystem.getDirectoryContents()

gets the names of the files in a directory
Synopsis

array = filesystem.getDirectoryContents(directory, recurse)
Description

Retrieves the names of the files in the specified directory optionally recursing (descending) into each
subdirectory.

Example
fileList = filesystem.getDirectoryContents(path, false);
Platform Notes

As of version 2.0, this function behaves the same on both Mac and Windows OS. It now always returns
an array of names that are rooted at the directory you pass and never a full path. Previously, Windows
would return full paths if you passed in a full path.

Availability

Available in version 1.8 or newer.

filesystem.getDisplayName()

returns the user-friendly name of a file

Synopsis
filesystem.getDisplayName(path)

244 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Filesystem filesystem.getFilelnfo()

Description

This function returns the display name for a file path. The display name is what you'd see in the Finder or
Explorer. For example, if a file's extension is supposed to be hidden, this function removes it. You are
guaranteed to print the same name for a file path that you see in the OS.

Example
print(filesystem.getDisplayName("C:\"));

Availability

Available in version 2.0 or newer.

filesystem.getFilelnfo()

returns information about a file or directory
Synopsis

filesytem.getFileInfo(path)
Description

This function returns a small object that describes the file or directory passed to it. The object has the
following attributes:

size
isDirectory
isHidden
TastModified

When there is an isDirectory function, this information comes with that tidbit as well to save the
number of filesystem operations necessary to traverse a tree of files.

Example
info = filesystem.getFileInfo("myfile.txt");

print("myfile is + bytesToUIString(info.size) + " in size");

Availability

Available in version 2.0 or newer.

filesystem.getMD5()

computes the md5 digest for a file

Synopsis
string filesystem.getMD5(string)
Description

This function computes the md5 digest (or 'hash') for a file. An md5 digest, while not 100% guaranteed
to be unique, is typically used to determine if files are identical. The engine actually uses md5 hashes to
determine when a Widget changes.

Example
var hash = filesystem.getMD5("myfile.txt");

if (hash != lastHash)

% KONFABULATOR 4.5 REFERENCE MANUAL | 245

System DOM Reference: Filesystem filesystem.getRecycleBinInfo() filesystem.getTrashinfo()

print("File has changed!");
Availability

Available in Version 4.0 or newer.

filesystem.getRecycleBinInfo()
filesystem.getTrashinfo()

gets information about files that have been deleted but not yet purged

Synopsis
filesystem.getRecycleBinInfo()
filesystem.getTrashInfo()

Description

Retrieves the number and total size of files that are in the user's trash or recycle bin. An object with two
members is returned, numItems and size.

The function has two names to reflect the different terms used on the two platforms, Windows OS and
Mac OS X.

Example

mytrash = filesystem.getRecycleBinInfo();
mesg = myTrash.numItems + " items (" + myTrash.size +
n bytes)ll;

Availability

Available in version 1.8 or newer.

filesystem.isDirectory()

determines if a given path is a directory

Synopsis
filesystem.isDirectory(path)

Description

Returns true if the given path is a directory, false otherwise.

Example
isDir = filesystem.isDirectory(path);

Availability

Available in version 1.8 or newer.

filesystem.isPathAllowed()

tests security permissions for a path

Synopsis
bool filesystem.isPathAllowed(string)

246 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Filesystem filesystem.itemExists()

Description

This function tests the given file path to see if the Widget has permission to access that location based on
the security settings in the Widget's metadata file. A common use is to test the result of a selector
preference after preferences have been changed.

Example
var canAccess = filesystem.isPathAllowed(preferences.selector.value)

Availability

Available in version 4.5 or newer.

filesystem.itemExists()

determines if a given path exists

Synopsis
filesystem.itemExists(path)

Description

Returns true if the given path exists (is a file or a directory), false otherwise.

Example
exists = filesystem.itemExists(path);

Availability

Available in version 1.8 or newer.

filesystem.move()

moves a file or files to a location

Synopsis
filesystem.move(path, destination);
Description

This function allows you to move a file or files to a specified destination. The source can be a single path,
or an array of paths.

Version Notes

In versions earlier than 4.0, you cannot rename a file by moving it. As such, the destination must be a
directory that exists. This function returns true if successful, false otherwise.

In version 4.0 and newer, this restriction is lifted, and the destination can point to a file that does not yet
exist (though the parent directory must exist).

Example
filesystem.move("myfile.txt", "/Users/evoas");

Availability

Available in version 2.0 or newer.

filesystem.moveToRecycleBin()

% KONFABULATOR 4.5 REFERENCE MANUAL | 247

System DOM Reference: Filesystem filesystem.open()

filesystem.moveToTrash()

deletes items by moving them to the trash or recycle bin

Synopsis
filesystem.moveToRecycleBin(f77es)
filesystem.moveToTrash(f77es)

Description
Sends the specified file or files (you should provide an array of strings to delete multiple files at a time).

The function has two names to reflect the different terms used on the two platforms, Windows OS and
Mac OS X.

Example
filesystem.moveToTrash(myTmpFile);

Availability

Available in version 1.8 or newer.

filesystem.open()

opens a file based on its file type/extension
Synopsis

filesystem.open(path)
Description

You can use this function to open an arbitrary file with the correct application. For example, passing a
Widget file path into this function opens the Widget in the Yahoo! Widget Engine (i.e., it runs the Widget,
as expected). Passing a folder in opens it in Finder/Explorer.

Example
filesystem.open("PIM Overview.widget");

Availability

Available in version 2.0 or newer.

filesystem.openRecycleBin()
filesystem.openTrash()

opens the folder that contains the items in the trash/recycle bin

Synopsis
filesystem.openRecycleBin()
filesystem.openTrash()

Description

This function opens a window showing the contents of the Trash/Recycle Bin. It is the equivalent of
double-clicking the Trash or Recycle Bin icons.

The function has two names to reflect the different terms used on the two platforms, Windows OS and
Mac OS X.

248 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Filesystem filesystem.readFile()

Example
filesytem.openTrash(Q);

Availability

Available in version 2.0 or newer.

filesystem.readFile()

reads a text file into a string or array
Synopsis

filesystem.readFile(path [,asLines [,charset]])
Description

This function is used to read a text file into either a string or array variable. If the optional second
parameter is true, the file is read and broken into lines and an array of those lines is returned. Otherwise,
just one long string of the contents is returned.

The Widget Engine can read most of the typical text file formats, but works best with either UTF-16 or
UTF-8 encodings.

In version 4.5 and later, an optional third attribute exists to allow you to pass the charset of the file, if
known.

Example
var data = filesystem.readFile("myfile.txt");

var lines = filesystem.readFile("myfile.txt", true);
Availability

Available in version 2.0 or newer. The charset attribute is available in version 4.5 or newer.

filesystem.reveal()

makes the system file browser display an item in context
Synopsis

filesystem.reveal(path)
Description

This function causes the system file browser (Explorer on Windows OS, the Finder on Mac OS X) to
display the directory containing the specified item. This is useful for revealing filesystem items to the user.

Example
filesystem.reveal (myPath);

Availability

Available in version 1.8 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 249

System DOM Reference: Filesystem filesystem.remove()

filesystem.remove()

permanently deletes a file or directory

Synopsis
filesystem.remove(path|array)

Description

This function deletes a file, directory, or array of files or directories permanently (it is not moved to the
trash/recycle bin).

Currently, this function can only be used to delete files from your Widget's WidgetData directory.

Example
filesystem.remove(myPath);

Availability

Available in version 4.0 or newer.

filesystem.unzip()

unzips an archive into the specified directory

Synopsis
bool filesystem.unzip(path, destination);

Description

This function allows you to unzip an archive into a specified destination directory. The destination
directory and the path to the archive must already exist. The files inside the archive are placed directly in
the destination directory.

This function returns true if successful, false otherwise.

Example

// to unzip a zipped Widget bundle
filesystem.unzip("MyWidget.widget", "Unpacked");

// the above would result in the following directory

// structure. Note that the top element in the Widget is
// MyWidget.widget. If you had simply zipped two files
// into the archive, it would just place those two files
// into the "Unpacked" directory.

Unpacked/MyWidget.widget
Unpacked/MyWidget.widget/Contents
Unpacked/MyWidget.widget/Contents/MyWidget.kon
Unpacked/MyWidget.widget/Contents/Resources
Unpacked/MyWidget.widget/Contents/Resources/MyImage.png

Availability

Available in version 4.0 or newer.

250 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Filesystem filesystem.writeFile()

filesystem.writeFile()

writes a string or array to a text file

Synopsis
filesystem.writeFile(path, string | array [, append])
Description

This function writes out a file given either a string or an array of strings. If given a string, the data is
written out as is. If passed an array, the data is written out separated by return characters “\n." Currently,
this function always writes files as UTF-8.

You can pass an optional third parameter that instructs this function to append to an existing file (creating
if needed) instead of always creating a new file (the default).

Example
filesystem.writeFile("myfile.txt", myData);

Availability

Available in version 2.0 or newer.

filesystem.zip()

creates a Zip archive from the specified files and directories

Synopsis
bool filesystem.zip(path | array, destination [, baseDir]);

Description

This function allows you to create a Zip archive from a specified set of files or directories. The list of items
can be a single path or an array of paths.

The destination parameter can either be a path to a directory that exists, or the ultimate path to the
archive file you wish to create. The parent directory of the archive file must already exist. If you supply a
path to a directory, the default name Archive.zip is used. If this default name is used and a file of that
name is already present in the destination directory, it will find a unique name such as Archive 1.zip so it
will not overwrite an existing file. If you specify the archive name, however, an existing file with the same
name will be overwritten.

The baseDir parameter is an optional parameter. By default, all items you pass to the function get added
to the top of the Zip archive. You can specify a directory to use as the base directory inside the archive
using the baseDir parameter. For example, you might use this to gather multiple files from different places
on disk and put them into a single directory that is the top level of the Zip archive.

This function returns true if successful, false otherwise.

Example

// to zip up a Widget bundle
filesystem.zip("MyWidget.widget", "Built/MyWidget.widget");

// 5 files
filesystem.zip(new Array("filel.png", "file2.png", "other/moon.png",
"other/sun.png", "yetAnother/path/tothis.png"), "myfiles.zip");

// The Above yields an archive that looks T1ike:
filel.png

% KONFABULATOR 4.5 REFERENCE MANUAL | 251

System DOM Reference: Screen screen.availHeight

file2.png

moon.png

sun.png

tothis.png

// specify a base dir

filesystem.zip(new Array("filel.png", "another/file2.png"),
"archive.zip", "Contents/Test");

// the above yields
Contents/Test/filel.png
Contents/Test/file2.png

Availability

Available in version 4.0 or newer.

Screen

information about the display

Attributes

screen.availHeight
screen.availleft
screen.availTop
screen.availWidth
screen.colorDepth
screen.height
screen.pixelDepth
screen.resolution
screen.width

Synopsis

screen

Description

The screen object has various attributes which describe the metrics of the current screen (the display the
main window of a Widget is mostly on). See below for details of the individual attributes.

Example

for (a in screen)
print("screen." + a +

+ eval("screen." + a));

screen.availHeight

available height of the current screen
Synopsis

screen.availHeight
Description

The number of pixels available vertically on the screen most of the Widget's window occupies. This value
omits space taken by things like the system menubar and the dock.

Example
myWindow.vOffset = screen.availHeight - 30;

252 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: Screen screen.availLeft

screen.availlLeft

leftmost available position on the screen

Synopsis
screen.availlLeft

Description

The first available position at the left of the screen most of the Widget's window occupies that is not
occupied by a system feature such as the dock.

Example
myWindow.hOffset = screen.availlLeft + 30;

screen.availTop

topmost available position on the screen

Synopsis

screen.availTop

Description

The first available position at the top of the screen most of the Widget's window occupies that is not
occupied by a system feature such as the menubar.

Example
myWindow.vOffset = screen.availTop + 10;

screen.availWidth

available width of the current screen

Synopsis
screen.availWidth

Description

The number of pixels available vertically on the screen most of the Widget's window occupies. This value
omits space taken by system features like the dock.

Example
myWindow.width = screen.availWidth / 4;

screen.colorDepth

color depth of the current screen
Synopsis

screen.colorDepth
Description

The number of bits per pixel available on the screen most of the Widget's window occupies.

Example
alert("Bits per pixel:

+ screen.colorDepth);

% KONFABULATOR 4.5 REFERENCE MANUAL | 253

System DOM Reference: Screen screen.height

screen.height

height of the current screen

Synopsis
screen.height

Description

The number of pixels available vertically on the screen most of the Widget's window occupies. Normally
screen.availHeight provides a more useful measure of the screen's height.

Example
myWindow.vOffset = screen.availHeight - 30;

screen.pixelDepth

color depth of the current screen

Synopsis
screen.pixelDepth
Description
The number of bits per pixel available on the screen most of the Widget's window occupies. This is a

synonym for screen.colorDepth and is provided for compatibility.

Example
alert("Bits per pixel:

n

+ screen.pixelDepth);

screen.resolution

resolution of the current screen
Synopsis
screen.resolution
Description
The raster resolution in dots per inch (dpi) of the screen most of the Widget's window occupies.

Example
alert("Screen resolution:

+ screen.resolution);

screen.width

the current screen’s width

Synopsis
screen.width

Description

The number of pixels available horizontally on the screen most of the Widget's window occupies.
Normally screen.availwidth provides a more useful measure of the screen’s width.

Example
myWindow.hOffset = screen.width - 80;

254 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System

System

screen.width

information about the computer or environment

Attributes

system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system
system.
system
system.
system
system.
system
system.
system
system

Description

airport, system.wireless

airport.available, system.wireless.available
airport.info, system.wireless.info
airport.network, system.wireless.network
airport.noise, system.wireless.noise
airport.powered, system.wireless.powered
airport.signal, system.wireless.signal

appearance
battery

battery[n]
battery[n]
battery[n]
battery[n]

battery[n]
battery[n]
battery[n]
battery[n]

.currentCapacity
.isCharging
.isPresent
.maximumCapacity
battery[n].
.powerSourceState
.timeToEmpty
.timeToFull1Charge
.transportType

name

batteryCount

clipboard
cpu

cpu.activity

cpu.idle
cpu.nice

cpu.numProcessors

cpu.sys
cpu.user
event
languages
memory

memory.availPhysical
memory.availVirtual

.memory. Toad

memory.totalPhysical

mute

.platform
userDocumentsFolder, system.userDesktopFolder, system.userPicturesFolder,
.userMoviesFolder, system.userMusicFolder, system.userWidgetsFolder,

.memory.totalVirtual

applicationsFolder, system.temporaryFolder, system.trashFolder

.volume
.widgetDataFolder

The system object is your interface to things about your computer or some aspect of the environment.

For example, you can get information about the state of the battery or wireless connection if present.

KONFABULATOR 4.5 REFERENCE MANUAL

255

System DOM Reference: System system.airport, system.wireless

system.airport, system.wireless

built-in support for accessing WiFi/AirPort information

Attributes
available True if WiFi/AirPort is installed
info A summary of WiFi/AirPort status
network The name of the current network
noise The connection's noise level
powered True if WiFi/AirPort is powered on
signal The connection’s signal level

Description

The settings and status of an installed WiFi/AirPort card are available through the system.airport or
system.wireless object.

The WiFi/AirPort Widget makes extensive use of this object.

Example
if (system.airport.available && system.airport.powered)
alert("Current network is " + system.airport.network);
if(system.wireless.available && system.wireless.powered)
alert("Current network is "+ system.wireless.network);

system.airport.available, system.wireless.available

checks if a WiFi/AirPort (or other compatible wireless card) is installed

Synopsis
system.airport.available
system.wireless.available

Description

The availabTe attribute returns a Boolean true/false value that corresponds to the availability of the
wireless device capable of connecting to a network.

Example
if (! system.airport.available)
signal_status.src = "NoCard.png";
else
signal_status.src = "Signal.png";
if (! system.wireless.available)
signal_status.src = "NoCard.png";
else
signal_status.src = "Signal.png";
See Also

system.airport.signal, system.wireless.signal

256 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System system.airport.info, system.wireless.info

system.airport.info, system.wireless.info

WiFi/AirPort status summary

Synopsis
system.airport.info
system.wireless.info

Description
A brief, human-readable description of WiFi/AirPort status.

Example

alert(system.airport.info);
alert(system.wireless.info);

system.airport.network, system.wireless.network

name of current WiFi/AirPort network

Synopsis
system.airport.network
system.wireless.network

Description

This attribute contains the name of the current WiFi/AirPort network, if any.

Example
alert("AirPort network " + system.airport.network + " in use");
alert("WiFi network " + system.wireless.network + " in use");

system.airport.noise, system.wireless.noise

noise level of the current WiFi/AirPort connection

Synopsis
system.airport.noise
system.wireless.noise

Description

This attribute contains a numeric value that indicates the level of noise on the current WiFi/AirPort
connection.

This value is not generally reliable.

Example
if (system.airport.noise > 20)
status.src = "noisy.png";
if (system.wireless.noise > 20)
status.src = "noisy.png";

Platform Notes

On Windows OS, this attribute is always zero.

% KONFABULATOR 4.5 REFERENCE MANUAL

257

System DOM Reference: System system.airport.powered, system.wireless.powered

system.airport.powered, system.wireless.powered
checks if the WiFi/AirPort card is on or off

Synopsis
system.airport.powered
system.wireless.powered

Description

This Boolean variable indicates whether the WiFi/AirPort is currently turned on or off. Use this to decide
whether to access the other WiFi/AirPort status attributes.

Example
if (system.airport.available && system.airport.powered)
alert("Current network is " + system.airport.network);
if(system.wireless.available && system.wireless.powered)
alert("Current network is "+ system.wireless.network);

system.airport.signal, system.wireless.signal

signal strength of the current WiFi/AirPort connection

Synopsis
system.airport.signal
system.wireless.signal

Description

The signal attribute of the WiFi/AirPort object returns a number value that corresponds to the signal
strength of the wireless network the device is connected to.

Example
theStrength = system.airport.signal;
if (theStrength =&1t; 33)
signalBars.src = "halfFull.png"
theStrength = system.wireless.signal;
if (theStrength =&1t; 50)
signalBars.src = "halfFull.png"

Version Notes

In version 4.0 of the Widget Engine, the range is 0-75 and is not a linear mapping to Apple's signal
strength.

system.appearance

appearance of the current system

Synopsis
system.appearance

Description

The current appearance of the system.

Example
if (system.appearance == "Graphite")

258 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System system.battery

header.src = "graphiteHeader.png";
else
header.src = "aquaHeader.png";

Version Notes

In version 4.0 of the Widget Engine we do not support notifying Widgets of an appearance change.
Platform Notes
As of Mac OS X 10.3, this will only be Blue or Graphite.

If your Widget uses images that you would like to be specific to the current Mac OS X appearance, simply
use this variable to get the running appearance and adjust your image source file appropriately.

It should be noted that these get returned with initial caps, so make sure you test for the words “Blue”
and “Graphite,” not “blue” and “graphite."”

On Windows OS, the value Blue is always returned.

system.battery

built-in support for accessing battery and UPS information
Synopsis

system.battery
Description

The battery number is an array that's O based. Single battery laptops are always battery[0], however
when run on a computer with dual batteries, the expected primary bay registers as battery 1, and the
optional battery bay registers as battery 0. The number of batteries installed in the current system is
available in system.batteryCount.

Version Notes

In version 4.0 of the Widget Engine, only one battery is supported on Windows OS (however,
information about it is an aggregate of all batteries in the system).

system.battery[n].currentCapacity

current charge percentage of the battery

Synopsis
system.battery[batteryNumber] .currentCapacity

Description

Current charge percentage of the battery.

system.battery[n].isCharging

charging state of battery

Synopsis
system.battery[batteryNumber] .isCharging
Description

True if battery is being charged (i.e., it is at less that 100% capacity and the system is plugged into AC
power).

% KONFABULATOR 4.5 REFERENCE MAANUAL | 259

System DOM Reference: System system.battery[n].isPresent

system.battery[n].isPresent

checks if battery is installed

Synopsis
system.battery[batteryNumber] .isPresent

Description

True if battery is physically present.

system.battery[n].maximumCapacity

maximum charge capacity of the battery

Synopsis
system.battery[batteryNumber] .maximumCapacity

Description

Maximum capacity of the battery (since capacity is represented as a percentage, this is always 100).

system.battery[n].name

name of the battery

Synopsis
system.battery[batteryNumber] .name

Description

The human-readable name of the battery.

system.battery[n].powerSourceState

current power source

Synopsis
system.battery[batteryNumber] .powerSourceState

Description

Returns “AC Power" or “Battery Power" based on whether the system is plugged in or not.

system.battery[n].timeToEmpty

minutes of charge remaining
Synopsis

system.battery[batteryNumber] .timeToEmpty
Description

This value is in minutes. A value of -1 means the system is still determining how fast the battery is
draining (also known as the “calculating” phase).

260 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System system.battery[n].timeToFullCharge

system.battery[n].timeToFullCharge
minutes until battery is fully charged

Synopsis
system.battery[batteryNumber] .timeToFullCharge
Description

This value is in minutes. A value of -1 means the system is still determining how fast the battery is
charging (also known as the “calculating” phase).

Note: The system.battery[n].currentCapacity value is generally a more reliable determination of
how charged the battery is.

Example
alert(system.battery[0].timeToFullCharge + ' minutes to full charge');

system.battery[n].transportType

battery communication channel

Synopsis
system.battery[batteryNumber].transportType

Description

“Internal” or method of UPS communication.

system.batteryCount

number of batteries installed

Synopsis
system.batteryCount
Description

The number of batteries installed in the current system is available in system.batteryCount. Normally
this is 1, but some laptops support more so any Widget that intends to work with batteries should take
this into account.

Example

for (b = 0; b < system.batteryCount; b++)
totalTime += system.battery[b].timeToEmpty;

Platform Notes

For Windows OS, the value of this attribute is always 1 (though the power available from all batteries is
reported).

system.clipboard

accesses the current system clipboard

Synopsis
system.clipboard

% KONFABULATOR 4.5 REFERENCE MANUAL | 261

System DOM Reference: System system.cpu

Description

system.clipboard contains the text (if any) on the system clipboard. Setting this attribute loads the
system clipboard with that data, removing anything there previously.

Example
myText = system.clipboard;
myNeWTeXt = II__<(II + myTeXt + ll)>__ll;

system.clipboard = myNewText;

system.cpu

information about the current CPU load

Synopsis
system.cpu
Description

system.cpu is an object with several members that summarize the level of activity of the system CPU
(members are detailed below).

Notes

The underlying mechanism that gathers this data has a resolution of 1 second so that is as quickly as this
information can change. In other words, polling system.cpu more than once per second is not useful.

Example

for (a in system.cpu)
print("system.cpu." + a +

+ eval("system.cpu." + a));

See Also

system.cpu.activity, system.cpu.idle, system.cpu.nice, system.cpu.numProcessors,
system.cpu.sys, system.cpu.user

system.cpu.activity

information about the current CPU activity
Synopsis

system.cpu.activity
Description

system.cpu.activity contains the current percentage load of the CPU. If the computer is very busy, it
is near 100. It is the sum of the other system.cpu members user, sys, and nice. It represents the load
of the computer as a whole, no matter how many processors it has.

Example
Toad = system.cpu.activity;

system.cpu.idle

information about idle CPU cycles

Synopsis
system.cpu.idle

262 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System system.cpu.nice

Description

system.cpu.idle provides a measure (in percentage) of how much of the CPU is available for more
work.

Example
idle_percent = system.cpu.idle;

system.cpu.nice

information about raised priority CPU cycles

Synopsis
system.cpu.nice

Description

system.cpu.nice is a measure of how much of the CPU is occupied with tasks whose priority has been
raised (normal processes are reported as system.cpu.user).

Example
priorityTasks = system.cpu.nice;

Platform Notes

For Windows OS, the value of this attribute is always zero.

system.cpu.numProcessors

number of processors in the system

Synopsis
system.cpu.numProcessors

Description

system.cpu.numProcessors indicates how many processors there are in the current system.

Example

if (system.cpu.numProcessors == 2)
system = "Dualie";

system.cpu.sys

information about system CPU cycles
Synopsis

system.cpu.sys
Description

system.cpu.sys contains the percentage of the CPU occupied with system tasks (as opposed to user
tasks).

Example
systemTime = system.cpu.sys;

% KONFABULATOR 4.5 REFERENCE MIANUAL | 263

System DOM Reference: System system.cpu.user

system.cpu.user

information about user CPU cycles

Synopsis
system.cpu.user

Description

system.cpu.user is a measure of how much of the CPU is occupied with normal tasks (as opposed to
system tasks).

Example
userTasks = system.cpu.user;

system.event

information about the last event received

Synopsis
system.event

Description

system.event contains a variety of information about the last event the Widget received (typically as the
result of a user action such as a mouse click).

In 4.5 and later, the event stored in system.event is the event being dispatched. For this reason, the
information contained within the event will change depending on the class of event being dispatched. For
example, if a mouse event is being sent, that event is stored in system.event as well as sent to any event
listeners. Since the event is a mouse event, it will not contain keyCode, for example. Likewise, a load
event will not contain mouse or keyboard information at all. Consult the Events section for information
about any specific event that might be dispatched.

system.languages

current set of languages preferred by the user

Synopsis
system.languages
Description

system.languages contains the list of languages the user has specified in the International System
Preference panel. Element O is their primary language, 1 their second choice, and so forth.

You can only read this setting; it cannot be changed except by using the System Preferences panel.

Example
print("system.languages:

+ system.languages);

system.languages: en,de,ja,fr,nl,it,es,zh_TW

264 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System system.memory

system.memory

information about the physical/virtual memory of a computer

Attributes

availPhysical
availVirtual
Toad
totalPhysical
totalVirtual

Description

You can inspect the amount of memory on a computer through this system object. Note that at present,
the virtual memory numbers are somewhat suspicious on both platforms.

system.memory.availPhysical

amount of available physical memory

Description

Returns the number of bytes of available physical memory. You can use bytesToUIString to turn this
into something more user-friendly.

Example

print("available RAM: " +
bytesToUIString(system.memory.availPhysical));

Availability

Available in version 2.0 or newer.

system.memory.availVirtual

amount of available virtual memory

Description

Returns the number of bytes of available virtual memory. You can use bytesToUIString to turn this into
something more user-friendly.

Example

print("avail virtual memory: +
bytesToUIString(system.memory.availVirtual));

Availability

Available in version 2.0 or newer.

Notes

This number is not quite accurate at present, particularly on Windows OS.

system.memory.load

percentage of used memory

Description

Returns a number from 0 to 100 indicating the current amount of physical RAM that is in use.

% KONFABULATOR 4.5 REFERENCE MANUAL | 265

System DOM Reference: System system.memory.totalPhysical

Example

print("current system Tload: +
system.memory.load + "%");

Availability

Available in version 2.0 or newer.

system.memory.totalPhysical

amount of physical RAM installed

Description

Returns the number of bytes of installed physical memory. You can use bytesToUIString to turn this
into something more user-friendly.

Example

print("Installed RAM: " +
bytesToUIString(system.memory.totalPhysical));

Availability

Available in version 2.0 or newer.

system.memory.totalVirtual

amount of total virtual memory

Description

Returns the number of bytes of total virtual memory. You can use bytesToUIString to turn this into
something more user-friendly.

Example

print("total virtual memory: +
bytesToUIString(system.memory.totalVirtual));

Availability

Available in version 2.0 or newer.

Platform Notes

This number is not quite accurate at present, particularly on Windows OS.

system.mute

gets or sets the mute state of your system volume
Synopsis
system.mute
Description
This variable reflects whether the computer's sound is muted. Setting it to true mutes the system sound.

Examples

// Find out if the computer is muted or not
if (system.mute)

266 | KONFABULATOR 4.5 REFERENCE MANUAL #o

System DOM Reference: System

print("What? I can't hear you!");
else

print("I can hear sounds from my Mac!");
// Turn off system sound
system.mute = true;

system.platform

system.platform

type of system the Widget is running on

Synopsis
system.platform
Description
This variable contains the current platform a Widget is executing on.
Example
print("platform:
On Mac OS X results in:

+ system.platform);

platform: macintosh
On Windows OS results in:

platform: windows

system.userDocumentsFolder,
system.userDesktopFolder,
system.userPicturesFolder,
system.userMoviesFolder,
system.userMusicFolder,
system.userWidgetsFolder,
system.applicationsFolder,
system.temporaryFolder,
system.trashFolder

system variables that contain the names of various user folders

Synopsis
system.userDocumentsFolder
system.userDesktopFolder
system.userPicturesFolder
system.userMoviesFolder
system.userMusicFolder
system.userWidgetsFolder
system.applicationsFolder
system.temporaryFolder
system.trashFolder

Description

These variables contain the paths of various user-centric and system folders. The correct locations can be

determined in a platform-independent manner using these variables.

% KONFABULATOR 4.5 REFERENCE MANUAL | 267

System DOM Reference: System system.volume

Example
print("userMusicFolder:

Mac OS X results:

+ system.userMusicFolder);

userMusicFolder: /Users/joe/Music
Windows OS results:
userMusicFolder:
c:/Documents and Settings/joe/My Documents/My Music

system.volume

gets or sets the system audio volume
Synopsis

system.volume
Description

This variable reflects the current audio volume. Setting it to a number between 0 and 16 to changes the
system volume level. Setting the volume to O is the same as setting system.mute to true.

Example

// Set the audio volume to 50%
system.volume = 8;

system.widgetDataFolder

name of folder where the Widget can safely store data
Synopsis

system.widgetDataFolder
Description

This variable contains the name of a folder on the user's hard disk where persistent data (or even data
that needs to be cached for a short length of time) can safely be saved by the Widget. Historically,
Widgets have tried to save data inside their own bundles, but this has various drawbacks chiefly that the
location might not be writable. Each Widget gets a separate folder that is created if it does not already
exist.

Example
saveFileName = system.widgetDataFolder + "/data";

Platform Notes
On the Mac, the location of this folder is ~/Library/Application Support/Konfabulator/Widgets.

On the PC, it is located in C:\Documents and Settings\<user>\Local Settings\Application
Data\Yahoo\Widget Engine\Widget Data.

268 | KONFABULATOR 4.5 REFERENCE MANUAL #o

http://www.apple.com/itunes
http://www.apple.com/itunes

Miscellaneous DOM Reference

These attributes and functions give JavaScript code access to certain applications allowing remote control
and retrieval of data.

Currently the only supported application is i Tunes (available from http://www.apple.com/itunes for
both Windows OS and Mac OS X).

iTunes

gets information from and interacts with iTunes

Attributes

iTunes.playerPosition
iTunes.playerStatus
iTunes.random iTunes.shuffle
iTunes.repeatMode
iTunes.running
iTunes.streamURL
iTunes.trackAlbum
iTunes.trackArtist
iTunes.tracklLength
iTunes.trackRating
iTunes.trackTitTe
iTunes.trackType
iTunes.version
iTunes.volume

Functions
iTunes.backTrack()
iTunes. fastForward()
iTunes.nextTrack()
iTunes.pause()
iTunes.play()
iTunes.playPause()
iTunes.resume()
iTunes.rewind()
iTunes.stop()

Synopsis
iTunes
Description

The iTunes object allows remote control and display of iTunes track and artist information. See below for
details of the individual functions and attributes.

Availability

The iTunes object is available in version 1.8 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 269

Miscellaneous DOM Reference: iTunes iTunes.playerPosition

iTunes.playerPosition

current position within the current track

Description

This attribute returns the current position (in seconds) within the currently playing track. Setting it moves
the playback position to the specified number of seconds into the track.

Synopsis
iTunes.playerPosition

Example
position = iTunes.playerPosition;

iTunes.playerStatus

string describing the current state of iTunes

Synopsis
iTunes.playerStatus
Description

This attribute returns one of the following strings: stopped, paused, playing, fast forwarding,
rewinding, or unknown.

Example
currentState = iTunes.playerStatus;

iTunes.random
iTunes.shuffle

shuffle state of iTunes

Synopsis
iTunes.random

Description

This attribute reflects the shuffle state of iTunes. If the current playlist is set to shuffle, it is true, false
otherwise. Setting the attribute changes iTunes' shuffle state.

Example

iTunes.random = 1;
shuffleState = iTunes.shuffle;

iTunes.repeatMode

current repeat mode of iTunes

Synopsis
iTunes.repeatMode
Description

This attribute returns one of the following strings: off, one, or a11 indicating the current repeat mode.
The repeat mode can be set by setting the attributes to one of those strings.

270 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: iTunes

Example
mode = iTunes.repeatMode;
iTunes.repeatMode = 'off';

iTunes.running

iTunes.running

checks if iTunes is currently running

Synopsis

iTunes.running

Description

Use this attribute to determine if iTunes is currently running.

Example
iTunes.running;

iTunes.streamURL

URL of the currently playing stream

Synopsis
iTunes.streamURL

Description

If iTunes is currently playing an audio stream, this attribute contains the URL of the stream.

Example
url = iTunes.streamURL;

iTunes.trackAlbum

name of the current album

Synopsis
iTunes.trackAlbum

Description

This attribute contains the name of the current album (if known). If a stream is playing, the name of the

stream appears here.

Example
currAlbum = 1iTunes.trackATbum;

iTunes.trackArtist

artist of the current track

Synopsis
iTunes.trackArtist

Description

This attribute contains the name of the artist of the current album (if known). If a stream is playing, this

information is not available.

o,

KONFABULATOR 4.5 REFERENCE MANUAL | 271

Miscellaneous DOM Reference: iTunes iTunes.trackLength

Example
artist = iTunes.trackArtist;

iTunes.trackLength

length of the current track

Synopsis
iTunes.tracklLength

Description

This attribute contains the length of the currently playing track. If a stream is playing, this information is
not available.

Example
Ten = iTunes.trackLength;

iTunes.trackRating

rating of the current track

Synopsis
iTunes.trackRating

Description

This attribute contains the rating of the currently playing track. Setting the attribute changes the current
track’s rating in iTunes. If a stream is playing, this information is not available.

Example
rating = iTunes.trackRating;

iTunes.trackTitle

title of the current track

Synopsis
iTunes.trackTitle

Description

This attribute contains the title of the currently playing track. If a stream is playing, this information might
not be available.

Example
title = iTunes.trackTitle;

iTunes.trackType

type of the current track

Synopsis
iTunes.trackType

272 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: iTunes iTunes.version

Description

This attribute contains the type of the currently playing track. It can include one of the following: audio
file, audio cd track, audio stream, audio device, shared Tibrary, or unknown.

Example
tt = iTunes.trackType;

iTunes.version

version of iTunes
Synopsis
iTunes.version
Description
This attribute contains the version of the copy of iTunes that is being controlled.

Example
log("iTunes Version:

+ iTunes.version);

iTunes.volume

current iTunes volume

Synopsis

iTunes.volume

Description

This attribute reflects the volume iTunes is playing at. This can be between 0 and 100. Assign a value to
the attribute to change the volume.

Example
iTunes.volume = 60;

iTunes.backTrack()

tells iTunes to move to the previous track

Synopsis
iTunes.backTrack()

Description

Tells iTunes to move to the previous track.

Example
iTunes.backTrack(Q);

See Also
iTunes.nextTrack()

% KONFABULATOR 4.5 REFERENCE MANUAL | 273

Miscellaneous DOM Reference: iTunes iTunes.fastForward()

iTunes.fastForward()

tells iTunes to fast forward within the current track

Synopsis
iTunes.fastForward()

Description

Tells iTunes to skip forward within the current track.

Example
iTunes.fastForward();

See Also
iTunes.rewind()

iTunes.nextTrack()

tells iTunes to move to the next track

Synopsis
iTunes.nextTrack()

Description

Tells iTunes to move to the next track.

Example
iTunes.nextTrack(Q);

See Also
iTunes.backTrack()

iTunes.pause()

tells iTunes to pause playback

Synopsis
iTunes.pause()

Description

Tells iTunes to pause playback.

Example
iTunes.pause();

See Also
iTunes.resume()

iTunes.play()

tells iTunes to start playing the current track

Synopsis
iTunes.play(Q)

274 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: iTunes

Description

Tells iTunes to play the current track.

Example
iTunes.play(Q);

See Also
iTunes.pause()

iTunes.playPause()

iTunes.playPause()

tells iTunes to toggle between playing and pause

Synopsis
iTunes.playPause()

Description

Tells iTunes to play if it's currently paused, or pause if it's currently playing.

Example
iTunes.playPause();

iTunes.resume()

tells iTunes to resume playback

Synopsis

iTunes.resume()

Description

Tells iTunes to resume playback after being paused.

Example
iTunes.resume();

See Also
iTunes.pause()

iTunes.rewind()

tells iTunes to skip backward

Synopsis
iTunes.rewind()

Description

Tells iTunes to skip backward in the current track.

Example
iTunes.rewind(Q);

See Also
iTunes. fastForward()

% KONFABULATOR 4.5 REFERENCE MANUAL | 275

Miscellaneous DOM Reference: URL Object iTunes.stop()

iTunes.stop()
tells iTunes to stop playing

Synopsis
iTunes.stop()

Description
Tells iTunes to stop playing.

Example
iTunes.stop(Q);

See Also
iTunes.play()

URL Object

allows you to express a URL and retrieve data from that URL

XML Name

Not available.

JavaScript Name
URL

Description

The URL object represents a URL in its entirety or its separate parsed parts. A URL can then be used to
manage a connection to a remote resource. URLs are never defined in the XML section of a Widget.

The Widget Engine also supports XMLHttpRequest (see that section for information), which is a more
standard method of doing web connections.

Attributes

URL.autoRedirect
URL.hostname
URL.Tocation
URL.outputFile
URL .password
URL.path
URL.port

URL .postData
URL.queryString
URL.response
URL.responseData
URL.result
URL.scheme
URL.timeout
URL.username

Functions

URL.addPostFile()
URL.cancel ()
URL.clear()
URL.fetch()

276 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: URL Object URL.autoRedirect

URL.fetchAsync()
URL.getResponseHeaders ()
URL.setRequestHeader ()

URL.autoRedirect

controls whether to automatically follow redirects

Synopsis
URL.autoRedirect

Description
This attribute allows you to control whether a URL object follows redirects automatically. The default is
true. Setting this to false allows you to get the 302 redirect response and process it as you wish.

Example

var myURL = new URL;

myURL .autoRedirect = false;
myURL.Tocation = "http://mysite.com";
myURL . fetch();

Availability

Available in version 2.1 or newer.

URL.hostname

provides access to the requested hostname for the URL

Synopsis
URL.hostname

Description

This attribute allows you access to the hostname part of the URL as parsed. If the URL does not parse
correctly or no hostname has been provided, then hostname may be empty. This value can be written to,
and in so doing effects the URL.Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://myserver.com/path/to/file?today=TGIF");
var myVar = myURL.hostname; //assigns "myserver.com" to myVar
Availability

Available in version 4.5 or newer.

URL.location
web address of the URL

Synopsis
URL.Tocation

Description
Specifies the web address that the URL will fetch data from.

% KONFABULATOR 4.5 REFERENCE MANUAL | 277

Miscellaneous DOM Reference: URL Object URL.outputFile

Example
var url = new URLQ);
url.location = "http://www.yahoo.com";

contents = url.fetch(Q;

URL.outputFile

file to store the fetched data in

Synopsis
URL.outputFile

Description

Specifies an optional file into which fetched data will be stored. If you are retrieving textual data (e.g., an
HTML file) it is usually easier to just use the return value of URL. fetch(), but if you are retrieving binary
data (e.g., an image file) then the retrieved data must be stored in a file as the process of converting it to
a string will render it invalid.

Example
var url = new URLQ);
url.outputFile = system.widgetDataFolder + "/mytempfile";
url.location = "http://www.example.com/graphic.jpg";
url.fetchQ;
myIng.src = url.outputFile;

URL.password

provides access to the requested password for the URL
Synopsis

URL .password
Description

This attribute allows you access to the password part of the URL as parsed. If the URL does not parse
correctly or no password has been provided then password may be empty. This value can be written to,
and in so doing effects the URL.Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://sam:133tspeak@myserver.com/path/to/file?today=TGIF");
var myVar = myURL.password; //assigns "133tspeak" to myVar

Availability

Available in version 4.5 or newer.

URL.path
provides access to the requested path for the URL

Synopsis
URL.path

278 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: URL Object URL.port

Description

This attribute allows you access to the path part of the URL as parsed. If the URL does not parse correctly
or no path has been provided, then path defaults to "/". This value can be written to, and in so doing
effects the URL.Tocation as well as any subsequent web connections.

Example

var myURL = new URL("http://myserver.com/path/to/file?today=TGIF");
var myVar myURL.path; //assigns "/path/to/file" to myVar

Availability

Available in version 4.5 or newer.

URL.port

provides access to the requested port for the URL

Synopsis
URL.port

Description

This attribute allows you access to the port part of the URL as parsed. If the URL does not parse correctly
or no port has been provided, then the port may be -1. This value can be written to, and in so doing
effects the URL. Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://myserver.com:8080/path/to/file?today=TGIF");
var myVar = myURL.port; //assigns 8080 to myVar

Availability

Available in version 4.5 or newer.

URL.postData
data to be POSTed to a web server

Synopsis
URL.postData

Description

Setting postData causes a URL object to POST to its location rather than performing a GET operation. To
post nothing, set postData to an empty string. To make the URL object GET again, set postData to null.

The format of this data should be URL encoded, i.e., each parameter is passed as name=value and
parameters are separated by a “&" symbol. Use encode () when your data contains spaces, “&," “=," or
non-ASCII characters.

Example

var url = new URLQ);

var text = encode("a lot of &&& bad text");

url.postData = "x=123&y=456&q=" + text;

contents =
url.fetch("http://www.example.com/myscript.php");

% KONFABULATOR 4.5 REFERENCE MAANUAL | 279

Miscellaneous DOM Reference: URL Object URL.queryString

URL.queryString
provides access to the requested queryString for the URL

Synopsis
URL.queryString
Description

This attribute allows you access to the queryString part of the URL as parsed. If the URL does not parse
correctly or no queryString has been provided, then queryString may be empty. This value can be
written to, and in so doing effects the URL.Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://myserver.com/path/to/file?today=TGIF");
var myVar = myURL.queryString; //assigns "today=TGIF" to myVar
Availability

Available in version 4.5 or newer.

URL.response

HTTP response code for the last fetch

Synopsis
URL.response

Description

The response attribute indicates the HTTP response code received as a result of the last fetch call.
Codes greater than or equal to 400 indicate that there was a problem completing the request.

Note: A response code is only available if a web server was contacted and a request made. If the server
is not available or an invalid URL is supplied for the Tocation, then the response attribute is 0. A
successful web page retrieval is usually indicated by a response code of 200. By default, the
Widget Engine does redirection automatically, so you will never see a response code of 302 unless
you set the autoRedi rect attribute to false.

Example
var url = new URLQ);
url.Tlocation = "http://www.yahoo.com";

contents = url.fetch(Q);
log("Response was: " + url.response);

URL.responseData

result of the last request

Synopsis
URL.responseData
Description

The responseData attribute is used to get the actual text response from the server regardless of the
status code sent back. This differs from the URL. result attribute in that you always get the real response
text back and never any status string. If the connection failed, this attribute is empty.

280 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: URL Object URL.result

With this attribute, you can get the actual 404 page that is returned if you get a 404 error from the

server.
Example
var url = new URLQ);
url.Tocation = "http://www.mysite.com/a_url_that_doesnt_exist";

url.fetchQ;

// will print "Could not load URL"
print(url.result);

// will print the actual response from the server
print(url.responseData);

Availability

Available in version 2.1.1 or newer.

URL.result

result of the last request, or an error string

Synopsis
URL.result

Description

The result attribute indicates the result received from the last request made using fetch() or
fetchAsync (). This contains the actual text of the result (e.g., a web page), or the error strings “Could
not load URL" or “Could not load URL with POST." If you need the actual response even when the
status code from the server is not 200, use responseData in version 2.1.1 or newer.

Example
var url = new URLQ);
url.location = "http://www.yahoo.com";

url.fetch(Q;
print(url.result);

Availability

Available in version 2.1 or newer.

URL.scheme

provides access to the requested scheme for the URL

Synopsis
URL.scheme

Description

This attribute allows you access to the scheme part of the URL as parsed. If the URL does not parse
correctly the scheme may be empty. This value can be written to, and in so doing effects the
URL.Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://myserver.com/path/to/file?today=TGIF");
var myVar = myURL.scheme; //assigns "http" to myVar

% KONFABULATOR 4.5 REFERENCE MANUAL | 281

Miscellaneous DOM Reference: URL Object URL.timeout

Availability

Available in version 4.5 or newer.

URL.timeout

length of time to wait for a response from the server

Synopsis
URL.timeout
Description

This attribute sets the time to wait for a server response. The default timeout for a request is 60 seconds.
You can only set timeout for an integral number of seconds.

Example
var url = new URLQ);
url.Tocation = "http://www.yahoo.com";

url.timeout = 120; // two minutes
url.fetch(Q;
print(url.result);

Availability

Available in version 2.1 or newer.

URL.username

provides access to the requested username for the URL
Synopsis

URL.username
Description

This attribute allows you access to the username part of the URL as parsed. If the URL does not parse
correctly or no username has been provided, then username may be empty. This value can be written to,
and in so doing effects the URL.Tocation as well as any subsequent web connections.

Example
var myURL = new URL("http://sam:133tspeak@myserver.com/path/to/file?today=TGIF");
var myVar = myURL.username; //assigns "sam" to myVar

Availability

Available in version 4.5 or newer.

URL.addPostFile()
adds a file for a multipart POST request

Synopsis
URL .addPostFile(path)

282 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: URL Object URL.cancel()

Description

This function adds a file path to a list of files to be sent along with a POST request. The path is not tested
for existence until the POST is sent. When files have been added, your request is automatically set to be a
POST request.

Example

var myURL = new URL;

myURL .addPostFile("myfile.png", "/A/Local/File/Path.png");
myURL.Tocation = "http://mysite.com";

myURL . fetch();

Availability

Available in version 2.1 or newer.

URL.cancel()

cancels an asynchronous request sent using fetchAsync()

Synopsis
URL.cancel ()
Description

This function cancels an outstanding request sent using fetchAsync(). It has no effect if there is no
async request pending. If called, the request is dropped and the function that would normally receive the
result of the request is not called.

Example

var myURL = new URL;
myURL.location = "http://mysite.com";
myURL . fetchAsync(myCallback);

r;1)./L.JRL.cance1 O;
Availability

Available in version 2.1 or newer.

URL.clear()

clears the current settings of a URL object

Synopsis
URL.clear()

Description

After using a URL object, if you wish to reuse it to send another request, you can call the clear()
method to ensure any prior post data (e.g., files) is gone from the object. If you call this function on a
URL object that is currently running an async request, the request is canceled before the object is cleared.

Example
myURL = new URL;
myURL.location = "http://widgets.yahoo.com/"
result = myURL.fetch();
// reuse the object

% KONFABULATOR 4.5 REFERENCE MIANUAL | 283

Miscellaneous DOM Reference: URL Object URL.fetch()

myURL.clear();
myURL.Tocation = "http://www.yahoo.com/"
result = myURL.fetch();

Availability

Available in version 2.1 or newer.

URL.fetch()

returns URL data as a string

Synopsis
URL.fetch([location])

Description

Retrieves data from the remote location specified or from the web address specified in the URL's
Tocation attribute. If a location is specified, this also sets the value of the Tocation attribute of the URL.
The data is either returned as a string (the default) or into a file if the outputFile attribute has been set.
This is done synchronously so the Widget pauses until the data is retrieved.

If an error occurs and fetch() is returning a string, then it returns the string “Could not load URL" (or
the string “Could not load URL with POST" if the attribute postData is set). The response attribute
contains the code indicating the type of error.

Note: If you are retrieving an RSS feed (or any web resource) , make sure you do not fetch it too often.
Any frequency shorter than 30 minutes should be carefully considered. Your Widget might be used
by thousands of people and the web site supplying the data may not appreciate the automated
traffic. Also make sure that you do not implement a scheme that causes all instances of a Widget
to try and fetch data at the same time (e.g., every hour on the hour) as this can also cause
problems for sites (using an onTimer action is fine because different people's Widgets start at
different times).

Example

var url = new URLQ);
webAddress = "http://www.yahoo.com";
contents = url.fetch(webAddress);

Version Notes

In version 2.1 or newer, you can also get the result using the result attribute.

URL.fetchAsync()
GETs or POSTs something asynchronously

Synopsis
URL . fetchAsync(function)

Description

This works similarly to fetch() except that it performs the request asynchronously, leaving your Widget
to go about its business while the request completes. When the request is done, it calls the function you
pass into the function. Your function receives the ur1 object that started the request, which you can
query to get the result and the response of the request.

Use of this function greatly improves the responsiveness of your Widget, allowing the user to drag and
otherwise interact with it while the request is running.

284 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: URL Object URL.getResponseHeaders()

Example
var url = new URLQ);
url.location = "http://www.yahoo.com";

url.fetchAsync(url_done);

function url_done(url)

{
print("fetch complete");
print("response: " + url.response);
print("result: " + url.result);
}
Availability

Available in version 2.1 or newer.

URL.getResponseHeaders()

returns headers from an HTTP response

Synopsis
URL.getRespsonseHeaders(name)

Description

This function allows you to get the headers that accompany an HTTP response. The most useful purpose
of this is to get “Set-Cookie" headers for use at a later time. Version 2.1 and later disable automatic
cookie handling for security reasons, so if your Widget needs to use cookies to work, you need to use this
function to get them out of a response. You can then pass the cookies back to the server in a later call to
fetch() by setting them with setRequestHeader.

This function returns an array of the headers that match the name you pass in. In version 3.0 or newer,
you can pass “*" as the name and you will receive an array of the complete headers, including the name
(passing a name yields the value of the headers only).

Example
var url = new URLQ);
url.Tlocation = "http://www.my_site.com"; |

url.fetch(Q);
var cookies = URL.getResponseHeaders("Set-Cookie");

Availability

Available in version 2.1 or newer.

URL.setRequestHeader()

sets a header on an HTTP request

Synopsis
URL.setRequestHeader(name, value)

Description

This function sets headers to accompany an HTTP request. The most common use of this is to set cookies
for a request. Version 2.1 disables automatic cookie support, so this function is necessary in order to
continue to use cookies. With the getResponseHeaders function, this function can be used to deal with

% KONFABULATOR 4.5 REFERENCE MANUAL | 285

Miscellaneous DOM Reference: Animation URL.setRequestHeader()

cookies in your Widget. After receiving cookies in a prior response (see URL .getResponseHeaders()),
you can use this function to set the cookie or cookies in a future request. The name parameter is the name
of the header, the value parameter is the actual contents of the header.

Example
var url = new URLQ);
url.Tocation = "http://www.my_site.com";

url.setRequestHeader("Cookie", myCookie);
url.fetchQ;

Availability

Available in version 2.1 or newer.

Animation

objects and functions to aid in doing animations

Version 2.1 and later of the Widget Engine contains animation support that allows you to do animations
asynchronously as well as synchronously. It also allows you to do custom animations written in JavaScript.
You can fade, move, resize, and rotate objects.

A new object called animator controls the animation. You tell the animator to start an animation and run
it asynchronously, allowing your Widget to do other things in the meantime. You can also take an
animation (or multiple animations) and run them all synchronously, meaning the call will block until all the
animations are complete.

These facilities take all of the hard work out of doing pretty interesting animations. They also provide
“ease" functions for you to use to get the standard animation technique of easing, where an object's
speed can ramp up or down at the start or end of the animation to give a better feeling of realism to the
movement.

Each animation type has a done function that can be called to let you know when the animation is
complete. If your Widget's minimum platform version is set to 4.0 or newer, this function is called for
both synchronous and asynchronous animations. In prior releases, it was only called when running an
animation asynchronously. You can use the done function to chain animations together, starting a new
animation when an older one is ending.

The MoveAnimation, FadeAnimation, ResizeAnimation, and RotateAnimation objects all contain an
object called owner that is the object the animation is operating on. owner ensures that the object does

not get garbage collected while the animation is running, but you can use this attribute to reference the

target object.

Animator

the master animation object

The animator object is the core of the animation system in version 2.1 or newer. It is what you use to
start animations. You can also call methods on it to help you deal with “ease” transitions.

animator.ease()

animator.kEaseIn, animator.kEaseOut, animator.kEaseInOut, animator.kEaseNone
animator.milliseconds

animator.runUntilDone()

animator.start()

286 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: Animation animator.ease()

animator.ease()

blends a number between two numbers for an “ease” effect
Synopsis

animator.ease(start, end, percent, easeType)
Description

This function helps you create an “ease” effect in your animations. All of the built-in move animations
that have been in Widget Engine 2.0 and newer have had this effect. You can make an object speed up as
it moves away or slow down as it stops to give it a more realistic feeling of movement.

To use this function, you pass the starting and ending number, along with the percentage complete as a
fraction (i.e., if you are half complete, pass 0.5). The ease type is specified with one of the constants
attached to the animator object: kEaseBounce, kEaseNone, kEaseIn, kEaseOut, kEaseInOut. See the
animator.kEaseln, animator.kEaseOut, animator.kEaselnOut, animator.kEaseNone section for what these
constants mean.

Example
var n = animator.ease(0, 100, .7, animator.kEaseOut);

// at this point, n is some place between 0 and 100
// depending on the ease out curve. It is not Tinear.

Availability

Available in version 2.1 or newer.

animator.kEaseln, animator.kEaseOut, animator.kEaselnOut, animator.kEaseNone

constants to dictate the type of easing to use

Description

These constants are used when creating different animation objects as well as using the
animator.ease() function. If you are familiar with easing, the engine currently uses a sinusoidal ease
function.

EaseIn means that the object starts to move slowly and then speeds up as it moves.
EaseOut means the object starts quickly and slows down as it comes to rest.

EaseInOut means the object starts slowly, reaches full speed, then starts to slow down as it approaches
the end of its journey.

EaseNone means no easing is in effect. The speed is constant from beginning to end.

Availability

Available in version 2.1 or newer.

animator.milliseconds

current animation timebase

Description

For custom animations, it is useful to get the current animation timebase to mark the start time (or just
know when “now" is). This attribute of the animator object allows you to determine the current time.

% KONFABULATOR 4.5 REFERENCE MANUAL | 287

Miscellaneous DOM Reference: Animation animator.runUntilDone()

Example
myAnimation.startTime = animator.milliseconds;

Availability

Available in version 2.1 or newer.

animator.runUntilDone()

runs animations to completion

Synopsis
animator.runUntilDone(object | array)

Description

This function is used to run an animation or animations until they are all complete. This function does not
return until all of the animations specified are completely done. For this reason, this function should be
used only when you are running short, finite animations. An infinite animation such as a “pulsing button”
effect would mean this call would never exit, so care must be taken to ensure this does not occur.

Example

// crossfade

var a = new FadeAnimation(myImagel, 0, 350,
animator.kEaseOut);

var b = new FadeAnimation(myImage2, 255, 350,
animator.kEaseOut);

animator.runUntilDone(new Array(a, b));

// at this point both animations are complete.

Availability

Available in version 2.1 or newer.

animator.start()

starts asynchronous animations

Synopsis

animator.start(object | array)

Description

This function is used to run an animation or animations asynchronously. This function returns
immediately—it does not wait for the animations to complete. The animations do not even start until
your JavaScript code is exited and control returns back to the Widget's main event loop. This means you
can start multiple animations and they start at the exact same time. You can call start for each one, or
pass them all as an array into start, it doesn't matter.

Example

// crossfade asynchronously
var a = new FadeAnimation(myImagel, 0, 350,
animator.kEaseOut);
var b = new FadeAnimation(myImage2, 255, 350,
animator.kEaseOut);
animator.start(new Array(a, b));
// at this point nothing has started yet. When we Teave our Javascript code, the
animations will start up at the exact same time.

288 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: Animation animator.start()

Availability

Available in version 2.1 or newer.

animation.kill()

base class method to terminate a running animation
Synopsis

animation.kil1(Q)
Description

This function is a “base class” function that can be called on any of the animation objects below. It is used
for stopping asynchronous animations that might be running. For example, if you have an animation that
rotates an object indefinitely while in a certain mode, you need to stop that animation when you exit the
mode. To do that, just use this function.

Example

var a = new CustomAnimation(1, SpinMeRightRoundBaby);
animator.start(a);

// some time later, maybe after the user clicks a button
if (a != undefined)
a.kil10Q;

Availability

Available in version 2.1 or newer.

CustomAnimation()

custom animation routine written in JavaScript

Synopsis
new CustomAnimation(interval, updateFunc [,doneFunc]);

Description

This is the most flexible animation object available to you, but you do need to do all the work. In general,
you can do fairly interesting things by using combinations of the fade, move, and rotate animation
objects provided below.

The first parameter is the interval your animation should start running at, in milliseconds. You can change
this interval in your update function. This allows you to have an animation that changes speed, fades in or
out, and so on. A good example of this is something along the lines of an animated GIF, in that each
frame can have its own duration. When your update function is called the “this" object is the animation
itself, so you can alter the interval as such:

function MyUpdate()

{
this.interval = 5000; // switch to 5 seconds
return true;

% KONFABULATOR 4.5 REFERENCE MANUAL | 289

Miscellaneous DOM Reference: Animation

animator.start()

The next parameter is the update function. This is where you do the work on the animation. You can do
things like move an object, change its opacity, or adjust an image's HSL settings. A custom animation

runs until the update function returns false. So a perpetual animation always returns true, as did the code
snippet above. You can always kill an animation that was perpetual by calling the ki11() method on the
animation:

myAnimation.kil1Q);

The last, optional parameter is the done function. This is called when your animation is done. If you have
a finite animation, it is called right after your update function returns false. Alternatively, do the work in
the update function right before you return false.

Along with the interval, your custom animation has another attribute accessible to it, startTime. This is
set automatically when your animation is added to the queue (in the case of using start) or when
runUntiTDone is called. You can query this value inside your update function to determine how much
time has elapsed. The example below shows this in use.

Example

var x = new CustomAnimation(1, UpdateMe);
// some custom attributes for my animation
x.duration = 350;

x.startOpacity = myObject.opacity;
x.endOpacity = 0;

function UpdateMe()

{
var now = animator.milliseconds;
var t = 1imit(now - this.startTime, O,
this.duration);
var percent = t / this.duration;
// set the new opacity of our object based on
// easing.
myObject.opacity = animator.ease(this.startOpacity,
this.endOpacity, percent,
animator.kEaseQOut);
// If the duration 1is up, let's get out of here
if (animator.milliseconds >=
(this.startTime + this.duration)
{
// make sure we reached the end
myObject.opacity = this.endOpacity;
return false; // we're done
}
return true; // keep going
}
Availability

Available in version 2.1 or newer.

FadeAnimation()

animation object to adjust the opacity of an object

Synopsis
new FadeAnimation(object, toOpacity, duration,

290 | KONFABULATOR 4.5 REFERENCE MANUAL

Miscellaneous DOM Reference: Animation animator.start()

easeType [, doneFunc]);

Description

This animation object can be used to adjust the opacity of an Image, Frame, Text, TextArea, or Window
object. This can be used to fade an object in or out. Pass the opacity that you ultimately want to reach in
the toOpacity parameter. The duration is specified in milliseconds. You can specify the type of easing in
the easeType parameter.

When you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed is called.

Example

var a = new FadeAnimation(myObject, 0, 350,
animator.kEaseOut, FadeDone);
animator.start(a);

function FadeDone()

{
// the fade above has finished
print("fade complete");
}
Availability

Available in version 2.1 or newer.

MoveAnimation()

animation object to adjust the position of an object

Synopsis
new MoveAnimation(object, toX, toY, duration,
easeType [, doneFunc]);

Description

This animation object can be used to adjust the position of an Image, Frame, Text, TextArea, or Window
object. This can be used to move an object on screen. It works by adjusting the hOffset and vOffset
attributes of the object you pass in. Pass the hOffset and vOffset that you ultimately want the object to
be. The duration is specified in milliseconds. You can specify the type of easing in the easeType
parameter.

When you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed is called.

Example

var a = new MoveAnimation(myObject, 100, 100, 350,
animator.kEaseOut, MoveDone);
animator.start(a);

function MoveDone()

{

% KONFABULATOR 4.5 REFERENCE MAANUAL | 291

Miscellaneous DOM Reference: Animation animator.start()

// the move above has finished
print("move complete");

}
Availability

Available in version 2.1 or newer.

RotateAnimation()

animation object to adjust the rotation of an object

Synopsis
new RotateAnimation(image, toAngle, duration,
easeType [, doneFunc]);

Description

This animation object can be used to adjust the rotation of an Image object. It does not affect Text,
TextArea, or Window objects. It works by adjusting the rotation attribute of the image you pass in. Pass
the angle that you ultimately want the object to be when the animation is finished. The duration is
specified in milliseconds. You can specify the type of easing in the easeType parameter.

When you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed is called.

Example

var a = new RotateAnimation(myObject, 180, 350,
animator.kEaseOut, RotateDone);
animator.start(a);

function RotateDone()

{
// the rotate above has finished
print("rotate complete");
}
Availability

Available in version 2.1 or newer

ResizeAnimation()

animation object to adjust the size of an object

Synopsis
new ResizeAnimation(object, toWidth, toHeight, duration,
easeType [, doneFunc]);

Description

This animation object can be used to adjust the size of an object. It works by adjusting the width and
height attributes of the objects you pass in. Pass the size that you ultimately want the object to be when
the animation is complete. The duration is specified in milliseconds. You can specify the type of easing in
the easeType parameter.

292 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Miscellaneous DOM Reference: JSON JSON.stringify

When you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed is called.

Example

var a = new ResizeAnimation(myObject, 200, 200, 350,
animator.kEaseOut, ResizeDone);
animator.start(a);

function ResizeDone()

{
// the resize above has finished
print("resize complete");
3
Availability

Available in version 4.0 or newer.

JSON

The engine supports JSON encoding and decoding in version 4.5 or later. There are two APIs for use:
JSON.stringify and JSON.parse. These are implemented using a public domain JSON object.

JSON.stringify
JSON.parse

JSON.stringify

turns a value into a JSON string

Synopsis
string JSON.stringify(value[,whitelist])
Description

This function takes any value and turns it into a JSON string. If you pass an array as the second
parameter, it should contain the names of the properties you wish to selectively output in the object you
passed as the first parameter. It essentially filters the output. Any properties which are either undefined or
functions will not be output if they are part of an object, and output as null if they are an array element.
If an object has a toJSON() method, that method will be called and the result will itself be turned into an
appropriate string.

Example
var output = JSON.stringify(array);

Availability

Available in version 4.5 or newer

JSON.parse

parses a JSON string into an object/array/value

Synopsis
value = JSON.parse(string[,filter])

% KONFABULATOR 4.5 REFERENCE MIANUAL | 293

Miscellaneous DOM Reference: Display Display.rect

Description

This function parses a JSON string and returns an appropriate value. The optional filter parameter is a
function which can modify the results. It is passed the key and value. It can then perform whatever action
it wishes on the input. It's output is used as the value to be stored. If it returns undefined, the value will
be dropped.

Example
var obj = JSON.parse(myJSONstring)

Availability

Available in version 4.5 or newer.

Display

The display object represents a display that is attached to the computer. There can be one or more
displays in operation at any time. Your Widget can query the display list to help you position windows
appropriately. The display object just contains two properties: rect and workRect. They are considered
to be immutable, i.e. setting them will have no effect on the system. The display objects are generally
valid until you receive a screenchanged event, at which point they should be considered invalid and you
should requery for the latest state of things.

There are two APIs you can call to get display information: getMainDisplay() which returns the main
display, and getDisplays(), which returns the entire display list (item O is normally the main display).

To help you position windows, you can also use the window APl window.getBestDisplay(). This
function will give you the display object that the window is intersecting the most.

Display.rect

the rectangle of the display

Description

This property represents the raw rectangle of the display. The main display always has an x, y value of 0.
Other displays will have an appropriately transformed origin.

Availability

Available in version 4.5 or newer.

Display.workRect

the usable rectangle of the display

Description

This property represents the usable rectangle of the display. On Mac, this means the area of the display
not accounting for the menu bar and dock. On Windows, it means the area of the display minus the area
of the task bar, etc.

Availability

Available in version 4.5 or newer.

294 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference

Cascading Style Sheets (CSS) is a standard for Web-based display of content. CSS is typically used in
conjunction with HTML to render web pages. Yahoo! has adopted CSS for use in our rendering model as
of version 4.0 of the Yahoo! Widget Engine, because continuously adding style information was
becoming unwieldy. Also, the inheritance attributes of CSS made it an ideal choice to help us bring a little
order to things and make it simpler to stylize a Widget. CSS also works towards finally separating the
visual aspects of a Widget from its structure.

There are limitations to the CSS implementation in version 4.0 and newer:

1. Style sheets are not yet supported.

2. The inherit keyword is not supported (but attributes that are supposed to be inherited do get inherited
by child objects).

3. Sizes and offsets are limited to using pixel units.
4. Font-weight values can only be normal, bold, 400, and 700.

Usage

The CSS style can be set on an object in both JavaScript and XML by accessing an object's style
attribute. In XML, you use the actual CSS names of the attributes and in JavaScript you use slightly
different naming due to JavaScript naming rules. For example:

// XML
<text style="font-size: 10px; -kon-text-truncation:end"/>

// Javascript
myText.style.fontSize = "10px";
myText.style.KonTextTruncation = "end";

As each style is described below, the CSS and JS names will be listed.

CSS Colors

This section explains the different ways colors can be specified when used in CSS in the Yahoo! Widget
Engine. There are four ways colors can be specified:

Hex number
rgb O
rgba()
Keywords

The hex method is probably the most familiar to anyone who has done HTML programming. It allows
you to specify an RGB triplet in a hex value, preceded by a hash mark, e.g., #FFO000. You can also use a
shorter version such as #F00, which is equivalent to #FFO000.

The rgb() and rgba() methods are functions which allow you to specify the red, green, and blue
components as numbers ranging from 0 to 255 in decimal. The rgba() function also takes a fourth
parameter which is the expression of the amount of alpha the color should have in a range from 0.0 to
1.0.

The last method is using keyword colors such as red and green. The full list of colors the engine supports
is aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, orange, purple, red, silver, teal, white,
and yellow.

% KONFABULATOR 4.5 REFERENCE MANUAL | 295

CSS Reference: Common Styles background

Common Styles

styles that are common to many different objects

This section lists the styles that are common to many of the objects that support CSS styles. For example,
several different objects can have backgroundColor styles.

Styles

background
backgroundAttachment
backgroundColor
backgroundImage
backgroundPosition
backgroundRepeat
color

fontFamily
fontSize
fontStretch
fontStyle
fontWeight
opacity

textAlign
textDecoration
KonBackgroundFil1
KonShadow
KonShadowColor
KonShadowOffset
KonTextTruncation

background

controls the background color and image of an object
Usage

JavaScript: background

CSS/XML: background

Values
<background-color> || <background-image> || <background-repeat> ||
<background-attachment> || <background-position>
Initial Value

See individual attributes.

Inherited
No.

Description

This is a shortcut style to allow you to set multiple attributes of an object’s background at the same time.

Applies To

Frame, Text, and TextArea objects.

296 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference: Common Styles backgroundAttachment

Example
Sets the background to be a color:

<frame name="myFrame" style="background:red"/>

myFrame.style.background = "red";

Sets the background to be an image:

<frame name="myFrame" style="background:url(http://example.com/marble.png)"/>

myFrame.style.background = "#FF0000 urlcChttp://example.com/marble.png)";
Availability

Available in version 4.0 or newer.

backgroundAttachment

controls whether a background image is fixed or scrolls
Usage

JavaScript: backgroundAttachment

CSS/XML: background-attachment

Values
scroll | fixed

Initial Value
scroll

Inherited
No.

Description

If a background image is specified, this attribute specifies whether it is fixed in place (fixed) or scrolls
along with the contents of the frame (scroll).

Applies To

Frame objects.

Example
This sets the background to contain an image that stays in place when the content is scrolled.

x = widget.getETlementById("foo");
x.style.background = "red url(Sun.png)";
x.style.backgroundAttachment = "fixed";

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 297

CSS Reference: Common Styles backgroundColor

backgroundColor

sets the background color of the object
Usage
JavaScript: backgroundColor

CSS/XML: background-color

Values
<color> | transparent

Initial Value
transparent

Inherited
No.

Description

Sets the background color of an element. You can use either a color value or the keyword transparent,
which omits use of a background color, leaving the object transparent.

The color can be either a typical hex color (e.g., #313131) or it can use the rgb() or rgba() notation. You
can also use several named colors, such as white. See the CSS Colors section for more information.

Applies To

Frame, Text, and TextArea objects.

Example
<frame name="myFrame" style="background-color:red"/>

myFrame.style.backgroundColor = "red";

Availability

Available in version 4.0 or newer.

See Also
The bgCoTlor attribute of the Text object, and the bgColor attribute of the TextArea object.

backgroundimage

sets the background image of an object
Usage
JavaScript: backgroundlmage

CSS/XML: background-image

Values
<uri> | none

Initial Value
none

298 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference: Common Styles backgroundPosition

Inherited
No.

Description

This attribute sets the background image of an element. When you specify an image, it is rendered on top
of any background color, and the color is visible in the transparent parts of the image.

Values for this attribute are either <uri>, to specify the location of an image, or none, to ensure that no
image is used.

Applies To

Frame objects.

Example
<frame style="background-image:url(sun.png)"/>

// or in Javascript:
frame.style.backgroundImage = "url(sun.png)";

Availability

Available in version 4.0 or newer.

backgroundPosition

specifies the initial position of a background image
Usage
JavaScript: backgroundPosition

CSS/XML: background-position

Values
[[<percentage> | <length> | left | center | right] [<percentage> | <length> |
top | center | bottom]?] | [[left | center | right 1 || [top | center |
bottom]]
Initial Value
0% 0%
Inherited
No.
Description

This attribute allows you to control the position of a background image, if one is specified using the
backgroundimage attribute. You can express the position in terms of absolute values, such as 20px, or in
terms of percentages. A value of 0% for a horizontal position would indicate the left edge of the image
starts at the left edge of the object (in this case a frame). A value of 100% would indicate the right edge
of the image would align with the right edge of the object.

You can mix the two position styles. For example, you can indicate a position of "25% 10px" to indicate
the image should start 25% in from the left and 10 pixels from the top of the object’s bounds. You can
also use keywords such as center and right. Left is equivalent to 0% and right is equivalent to 100% for a
horizontal value. Likewise, top is equivalent to 0% and bottom is equivalent to 100% for vertical values.
The keyword center means 50% for both directions.

% KONFABULATOR 4.5 REFERENCE MAANUAL | 299

CSS Reference: Common Styles

backgroundRepeat

While you can use combinations of absolute values, percentages, and keywords, If you use keywords and
nonkeyword values, the first term must represent the horizontal position and the second must represent
the vertical. If you use keywords for both values, you can put them in either order. You may also use

negative values as needed.

If you set only one position, it is taken to mean the horizontal position. The vertical position will be set to

50%.

If backgroundRepeat is set to repeat images, the position affects the first image and all others are tiled

out from that initial image.

Applies To

Frame objects.

Example

<frame style="background-image:url(Sun.png); background-position: 50%

myFrame.style.backgroundImage = "url(Sun.png)";

myFrame.style.backgroundPosition = "50% 50%";

Availability

Available in version 4.0 or newer.

backgroundRepeat

50%" />

specifies whether a background image is repeated and how
Usage

JavaScript: backgroundRepeat

CSS/XML: background-repeat

Values
repeat | repeat-x | repeat-y | no-repeat

Initial Value
repeat

Inherited
No.

Description

If a background image is specified, this attribute controls how the image is repeated, if at all. All repeating
is based off the first image, which is normally placed in the top, left of the content area, but can be

affected by the backgroundPos1ition attribute.

Applies To

Frame objects.

Example
<frame style="background-repeat:no-repeat"/>

myFrame.style.backgroundRepeat="no-repeat";

300 | KONFABULATOR 4.5 REFERENCE MANUAL

CSS Reference: Common Styles

Availability

Available in version 4.0 or newer.

color

color

foreground color of the text element
Usage
JavaScript: color

CSS/XML: color

Values
<color>

Initial Value

Depends on user agent.

Inherited

Yes.

Description

This attribute describes the foreground color of an element's text content. The color can be specified

using any standard CSS color format. See the CSS Colors section for more information.

Since this attribute is inherited, you can set it on a frame or window and have all elements within it that
obey the color attribute follow suit. In version 4.0, only Text and TextArea objects obey the color

attribute.

Applies To

Text, TextArea, Frame, and Window objects.

Example
<text style="color:blue"/>

myText.style.color="blue";
Availability

Available in version 4.0 or newer.

fontFamily

prioritized list of font family, generic family names

Usage
JavaScript: fontFamily

CSS/XML: font-family

Values

[[<family-name> | <generic-family>] [, <family-name>| <generic-family>]*]

Initial Value
Arial

o,

KONFABULATOR 4.5 REFERENCE MANUAL

301

CSS Reference: Common Styles fontSize

Inherited
Yes.

Description

The fontFamily attribute allows you to specify a comma-separated list of font families to use. You
specify the list in priority order. The engine attempts to use a family from the list until it finds a match on
the system. For example, if you specified “SuperFont, Helvetica,” the engine first tries to use SuperFont
and if it was not available, uses Helvetica.

There are two types of font families, a specific, named family, and a generic family, such as sans-serif.
Here is the list of generic families and the fonts they map to in the Yahoo! Widget Engine

serif (Times New Roman)
sans-serif (Arial)
cursive (Comic Sans MS)
fantasy (Futura)
monospace (Courier New)

Since this is an inherited attribute, you can set this attribute on a frame or a window and all text elements
within that window will take on this style (unless a particular element has a style specified for it, which
would override the inherited value).

Applies To

Text, TextArea, Frame, and Window objects.

Example

<text name="textl" data="Example Text" style="font-family:Gill, Helvetica, sans-
serif">

textl.style.fontFamily = "Gill, Helvetica, sans-serif";

Availability

Available in version 4.0 or newer.

fontSize

specifies the size of the font
Usage
JavaScript: fontSize

CSS/XML: font-size

Values
<length>

Initial Value
12px

Inherited

Yes.

302 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference: Common Styles fontStretch

Description

This attribute allows you to specify the size of the font to use for an object. At present, you must specify
the font size in pixels. Point sizes, ems, etc., are not supported in Version 4.0.

Negative values are not allowed.

Since this is an inherited attribute, you can set this attribute on a frame or a window and all text elements
within that window will take on this style (unless a particular element has a style specified for it, which
would override the inherited value).

Applies To

Text and TextArea objects.

Example
<text style="font-size:24px"/>

myText.style.fontSize = "24px";

Availability

Available in version 4.0 or newer.

fontStretch

controls the compression and expansion of a font
Usage

JavaScript: fontStretch

CSS/XML: font-stretch

Values
normal | condensed

Initial Value
normal

Inherited

Yes.

Description

The fontStretch attribute selects a normal, condensed, or extended face from a font family. In Version 4.0
we only support normal and condensed. Condensed is only valid in Version 4.0 on Mac OS X. Setting it to
condensed will have no effect on Windows OS.

Since this is an inherited attribute, you can set this attribute on a frame or a window and all text elements
within that window will take on this style (unless a particular element has a style specified for it, which
would override the inherited value).

Applies To

Text and TextArea objects.

Example

<text style="font-stretch:condensed"/>

% KONFABULATOR 4.5 REFERENCE MANUAL | 303

CSS Reference: Common Styles fontStyle

myText.style.fontStretch = "condensed";
Availability

Available in version 4.0 or newer.

fontStyle

specifies normal, italic, or oblique style

Usage
JavaScript: fontStyle
CSS/XML: font-style

Values
normal | italic

Initial Value
normal

Inherited
Yes.

Description

The fontStyTe attribute can be used to specify either to use normal or italic type. If you wish to have
bold text, you should use the fontWeight attribute.

Since this is an inherited attribute, you can set the font style of a frame or a window and all text elements
within that window takes on that style (unless a particular element has a style specified for it, which
overrides the inherited value).

Applies To

Text, TextArea, Frame, and Window objects.

Example
In this example, emphasized text within H1 appears in normal face.
<text style = "font-style:italic"/>
myText.style.fontStyle = "normal";

Availability

Available in version 4.0 or newer.

fontWeight
selects the weight of the font

Usage
JavaScript: fontWeight
CSS/XML: font-weight

304 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference: Common Styles opacity

Values
normal | bold | 400 | 700

Initial Value
normal

Inherited
Yes.

Description

You can use the fontWeight attribute to specify a bold font. In Version 4.0, the engine only supports
normal and bold. 400 and 700 are synonyms for those two keywords.

Since this is an inherited attribute, you can set the font weight of a frame or a window and all text
elements within that window will take on that value (unless a particular element has a style specified for
it, which would override the inherited value).

Applies To

Text, TextArea, Frame, and Window objects.

Example
<text style="font-size:12px; font-weight:bold"/>

myText.style.fontSize="12px";
myText.style.fontWeight = "bold";

Availability

Available in version 4.0 or newer.

opacity

controls the opacity of the object
Usage
JavaScript: opacity
CSS/XML: opacity

Values
<alphavalue> | inherit

Initial Value
1

Inherited
No.

Description

The <alphavalue> specifies the opacity of the object. The number can range from 0.0 (fully transparent)
to 1.0 (fully opaque).

Applies To

Frame, Text, TextArea, Scrol1Bar, Image, and Canvas objects.

% KONFABULATOR 4.5 REFERENCE MANUAL | 305

CSS Reference: Common Styles

Example
<text style="opacity:0.5"/>

myText.style.opacity = 0.5;
Availability

Available in version 4.0 or newer.

textAlign

textAlign

specifies how text is aligned
Usage
JavaScript: textAlign
CSS/XML: text-align

Values
left | right | center | justify | inherit

Initial Value
The default is the script direction of the system.

Inherited
Yes.

Description

This attribute specifies how a block of text is aligned.

In Version 4.0, justify only works on the Mac platform.

Applies To

Frame, Text, and TextArea objects.

Example
<text style="text-align:center"/>

myText.style.textAlign = "center";
Availability

Available in version 4.0 or newer.

textDecoration

decorations added to the text of an object using the object’s color

Usage
JavaScript: textDecoration

CSS/XML: text-decoration

Values
none | [underline || Tine-through]

306 | KONFABULATOR 4.5 REFERENCE MANUAL

CSS Reference: Common Styles

Initial Value
none

Inherited
No.

Description

KonBackgroundFill

This attribute allows you to specify special text effects. In Version 4.0, the only values supported are
underline and line-through. The underline will be drawn in whatever color the text is drawn.

Applies To

Text and TextArea objects.

Example

<text name="textl" data="Example Text" style="text-decoration:underline"/>

textl.style.textDecoration =

Availability

Available in version 4.0 or newer.

KonBackgroundFill

"underline";

controls the background color of an object

Usage
JavaScript: KonBackgroundFill
CSS/XML: -kon-background-fill

Values
stretch | tile

Initial Value
tile

Inherited
No.

Description

This attribute is an extension to CSS that allows you to specify that the background is stretched instead of
tiled (the default). If you set this attribute to stretch, all positioning is ignored (repeat, origin, etc.) and it

remains fixed in place (i.e., it will not be scrolled with any content).

Applies To

Frame objects.

Example

<text style="-kon-background-fill: stretch"/>

myText.style.KonBackgroundFill="stretch";

o,

KONFABULATOR 4.5 REFERENCE MANUAL | 307

CSS Reference: Common Styles KonShadow

Availability

Available in version 4.0 or newer.

KonShadow

specifies the shadow cast by an object
Usage
JavaScript: KonShadow

CSS/XML: -kon-shadow

Values
<shadow-offset> || <shadow-color>

Initial Value

See individual attributes.

Inherited
No.

Description

This attribute is a shortcut which allows you to set the shadow color and offset for text at the same time.
See the individual attributes for more information.

Applies To

Text objects.

Example
<text style="-kon-shadow: Opx 1lpx #FFFFFF"/>

myText.style.KonShadow="0px 1lpx white";

Availability

Available in version 4.0 or newer.

KonShadowColor

specifies the color of the shadow cast by a text object
Usage
JavaScript: KonShadowColor

CSS/XML: -kon-shadow-color

Values
<color>

Initial Value
#000000

Inherited
No.

308 | KONFABULATOR 4.5 REFERENCE MANUAL #o

CSS Reference: Common Styles KonShadowOffset

Description

This attribute controls the color of a shadow applied to text. The default shadow color is black.

Applies To

Text objects.

Example
<text style="-kon-shadow-color: #FFFFFF"/>

myText.style.KonShadowColor="white";
Availability

Available in version 4.0 or newer.

KonShadowOffset

specifies the offset of the shadow for an object

Usage
JavaScript: KonShadowOffset
CSS/XML: -kon-shadow-offset

Values
<length> <length>?

Initial Value
Opx

Inherited
No.

Description

The values for shadow offset can be either one or two values. If one is specified, it applies to both the
horizontal and vertical directions. If two are specified, the first value is the horizontal offset and the
second is the vertical offset. In version 4.0, the only supported unit of measure is pixels.

Negative values are allowed.

Applies To

Text objects.

Example
<text style="-kon-shadow-offset: 2px"/>

myText.style.KonShadowOffset="0px 1px";

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MAANUAL | 309

CSS Reference: Common Styles KonTextTruncation

KonTextTruncation

specifies how text is truncated in an object

Usage
JavaScript: KonTextTruncation
CSS/XML: -kon-text-truncation
Values
'none' | 'end' | 'middle’
Initial Value
none
Inherited
No.

Description

This property allows you to control the manner in which text is truncated if the text is too long to fitin its
assigned width. Text truncation settings only take effect if there's an imposed width on an object (i.e., the
width has been explicitly set) and there is no text scrolling set for the object.

Applies To

Text objects.

Example
// XML
<text width="40" data="A Tonger text string than will fit" style="font-size: 10px;
-kon-text-truncation:end" />

// Javascript

myText.data = "A Tonger text string than will fit"
myText.width = 40;

myText.style.fontSize = "10px";
myText.style.KonTextTruncation = "end";

Availability

Available in version 4.0 or newer.

310 | KONFABULATOR 4.5 REFERENCE MANUAL #o

SQLite Reference

Version 4.0 or newer of the Widget Engine supports the use of SQLite. You can use it as an alternative
storage medium to XML or a simple text file. The support in the engine is a subset of the full SQLite
functionality, but it should provide Widget authors with sufficient functionality to do most common tasks.

To use the SQLite support, you create SQL1i te objects and then interact with those objects. For example:

var db = new SQLite();

db.open("myfile");
db.exec("CREATE TABLE test (id int(11l), name varchar(255)); \
INSERT INTO test (id, name) values(C 1, \"Ed\");");

print(db.numRowsAffected);

db.close();

Along with the SQL1 te object, there is a SQL1iteResult object that is returned from query () calls. You
can use methods on it to extract information from the result.

var r = db.query("SELECT * from test");

while((x = r.getRow()) != null)
print(x['id'], x['name']);

In addition to getting the data, you can also get information about the columns that were returned. See
the reference below for more details.

SQLite Object

represents a database

Attributes

TastInsertRowID
numRowsAffected

Functions

open()
close()
exec()

query()

lastinsertRowID

return the last row ID from an INSERT statement

Description

This attribute allows you to get the ID of the last inserted row. You typically use this when you have a
column set up as an auto-incrementing primary key. Since the database controls what the key is, you
can't know what ID was assigned to a row until the row has been inserted. After inserting a row in such a
table, reference this attribute to get the ID.

Example

db.exec("INSERT INTO mytable (name) VALUES (\"Ed\")");
var id = db.lastInsertRowID;

% KONFABULATOR 4.5 REFERENCE MANUAL | 311

SQLite Reference: SQLite Object numRowsAffected

Availability

Available in version 4.0 or newer.

numRowsAffected

returns the number of rows affected by the last statement

Description

This attribute allows you to determine how many rows in a table were affected by the last statement
executed.

Example

db.exec("DELETE FROM mytable"); // wipe it out
print("Deleted " + db.numRowsAffected + " rows");

Availability

Available in version 4.0 or newer.

open()

opens or creates a database

Synopsis
db.open(path);

Description

This function opens or creates a database file. If the path passed in does not exist, the file is created and
opened as a new database. If any error occurs while opening the file, an exception is thrown.

When open, you can then use the query () and exec() calls. When you are done with the database, call
the close() function.

If you do not want to create a file, but instead want to use an in-memory database, you can pass the
special " :memory:" path name.

Calling open() on an already open database raises an exception.

Example
db = new SQLite(Q);

db.open(":memory:"); // in-memory database
Availability

Available in version 4.0 or newer.

close()

closes a database

Synopsis
db.close();

312 | KONFABULATOR 4.5 REFERENCE MANUAL #o

SQLite Reference: SQLite Object exec()

Description

This function closes a database previously opened by open (). If the database is already closed, close ()
has no effect. After the database is closed, if you wish to reuse the database, you must call open() again.

If you have any result objects around that were created from querying the database file, and you call
close(), it fails with an exception. You must use the dispose () call to ensure that any results are
properly finalized before calling close().

Example
db = new SQLite();

db.open(":memory:"); // in-memory database
db.close();
Availability

Available in version 4.0 or newer.

exec()

executes a statement or series of statements with no result
Synopsis

db.exec(statements);
Description

This function allows you to execute a series of statements that do not return results. The classic example
of this is creating a table or inserting rows. You can have one statement or a series of them separated by
semicolons.

Example
db.exec("CREATE TABLE foo (id int(11), name varchar(255);");

Availability

Available in version 4.0 or newer.

query()

executes a query statement and returns results

Synopsis
SQLiteResult db.query(statement);
Description

This function allows you to execute a single query statement that returns results. For example, you could
use this to select rows in a table.

Example
r = db.query("SELECT * FROM mytable");

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 313

SQLite Reference: SQLiteResult numColumns

SQLiteResult

the results of a database query

Attributes
numCoTumns

Functions

current()
next()

rewind()
getA110
getRow()
getColumn()
getColumnName ()
dispose()

numColumns

number of columns in the current row

Description

This returns the number of columns in the current row. If the current row is empty, zero is returned.

Example

r = db.query("SELECT * from mytable");
print(r.numColumns);

Availability

Available in version 4.0 or newer.

current()

returns the current row result of the statement as an associative array

Synopsis

array result.current();

Description

This function returns the current row of a result object as an associative array. You generally use this
function with the next () function to iterate over the rows in a result object. Alternatively, you can use
getRow(), which returns the current row and automatically steps to the next row. If you are at the end of
the result set, this function returns null.

Example
r = db.query("SELECT * FROM mytable");

do

{
print(r.currentQQ['id']);

}
while(r.next());

Availability

Available in version 4.0 or newer.

314 | KONFABULATOR 4.5 REFERENCE MANUAL #o

SQLite Reference: SQLiteResult next()

next()

skips to the next row in the result set
Synopsis

boolean result.next();
Description

This function attempts to move to the next row in the result set and returns true. If there are no more
rows in the set, false is returned.

Example
r = db.query("SELECT * FROM mytable");

do
{

}
while(r.next(Q));

print(r.currentQ["'id']);

Availability

Available in version 4.0 or newer.

rewind()

returns to the first row of the result set
Synopsis

boolean result.rewind(Q;
Description

This function attempts to move to the beginning of the result set, point to the first row in the set, and
return true. If there are no rows in the set, false is returned.

Upon successful completion of this function, current() returns the first row in the set.

Example
r = db.query("SELECT * FROM mytable");

do
{

3
while(r.next(Q));

print(r.currentQ["'id']);

r.rewindQ;
print(r.currentQ["id']);

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 315

SQLite Reference: SQLiteResult getAll()

getAll()

returns all rows in the set as an array of associative arrays

Synopsis
array result.getA11Q;
Description

This function returns all the rows in the result set as an array of associative arrays. You can use this if you
need to randomly access the rows returned by a query.

If there are no rows in the result, you receive an empty array object.

Example
r = db.query("SELECT * FROM mytable");

X = r.getA110);
print("The query returned " + x.length +
print("First key: " + x[0]['id']);

rows");

Availability

Available in version 4.0 or newer.

getRow()

returns the current row and advances to the next
Synopsis

array result.getRow();
Description

This function returns the current row as an associative array and advances to the next row in the set. You
can use it instead of current() and next() as an easy way to iterate results.

This function returns null when there are no more rows.

Example
var r = db.query("SELECT * from test");

while((x = r.getRow()) != null)
print(x['id'], x['name']);

Availability

Available in version 4.0 or newer.

getColumn()

returns a particular column of the current row

Synopsis
mixed result.getColumn(index | name);

Description

This function returns the data of the given column index or name. Column indexes start at 0.

316 | KONFABULATOR 4.5 REFERENCE MANUAL #o

SQLite Reference: SQLiteResult getColumnName()

If a numeric index is out of bounds, or a named column does not exist, an exception is raised.

If the current row is empty because there are no more rows, null is returned.

Example
var r = db.query("SELECT * from test");

print(r.getColumn(C 0));
print(r.getColumn(“id”));

Availability

Available in version 4.0 or newer.

getColumnName()

returns the name of a column of the current row

Synopsis
string result.getColumnName(index);

Description
This function returns the name of the given column index. Column indexes start at O.
If a numeric index is out of bounds, an exception is raised.

If the current row has no data, null is returned.

Example
var r = db.query("SELECT * from test");

print(r.getColumnName(0));
Availability

Available in version 4.0 or newer.

dispose()

disposes of the current row data

Synopsis
result.dispose();
Description

You can use this function to make sure the result of a query has been disposed of properly. You generally
only need to call this if you are going to explicitly close your database file. In that case, all result objects
generated by the file must be disposed of before the file can be successfully closed. Since it is not possible
to know when a result might be garbage collected, this function allows you to be explicit.

Example
var r = db.query("SELECT * from test");

print(r.getColumn(0));
print(r.getColumn("id"));

r.dipsose(); // close will fail without this

% KONFABULATOR 4.5 REFERENCE MANUAL | 317

SQLite Reference: SQLiteError

db.close();

Availability

Available in version 4.0 or newer.

SQLiteError

errCode

contains information about an exception

Attributes

errCode
errMsg

errCode

error code

Description

This attribute contains the SQLite error code.

Example

try
{
db = new SQLite();
db.open(“test”);
db.open(“test”); // this will fail
}
catch(e)
{

print(e.errCode, e.errMsg);

}
Availability

Available in version 4.0 or newer.

errMsg

error message

Description

This attribute contains a textual message explaining the exception.

Example
try
{
db = new SQLite();
db.open("test");
db.open("test"); // this will fail

}
catch(e)
{
print(e.errCode, e.errMsg);
3

318 | KONFABULATOR 4.5 REFERENCE MANUAL

SQLite Reference: SQLiteError errMsg

Availability

Available in version 4.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 319

SQLite Reference: SQLiteError errMsg

320 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions

This section describes the extensions to JavaScript that are provided by the Widget Engine. If JavaScript is
new to you, consider obtaining a guide to the language to help with its syntax and structure. The Yahoo!
Widget Engine implements a JavaScript engine (Mozilla SpiderMonkey) that conforms to the JavaScript
1.5 standard (ECMA-262, revision 3).

alert(Q)
appleScript(Q
beep(
bytesToUIString()
chooseColor()
chooseFile()
chooseFolder()
convertPathToHFS ()
convertPathToPlatform()
closeWidget()
escape()
focusWidget()
form(Q)
getMainDisplay()
getDisplays()
include()
isApplicationRunning()
konfabulatorVersion()
logO

openURL()

playQ

popupMenu ()
print()

prompt)

random()
reloadWidget()
resolvePath()
resumeUpdates ()
runCommand ()
runCommandInBg()
saveAs()
savePreferences()
showWidgetPreferences()
sleep()

speak ()
suppressUpdates ()
tellWidget ()
unescape()
updateNow()
yahooCheckLogin()
yahoolLogin()
yahooLogout ()

% KONFABULATOR 4.5 REFERENCE MANUAL | 321

Global Functions alert()

alert()
displays an alert dialog
Synopsis
alert(string, [button one, button two, button three])
Attributes
Attribute Description
string The text contents of the alert that that will be displayed.
button one The text presented on the first (or only) button shown on the alert. This argument is
optional.
button two The text presented on the second button of the alert. This argument is optional.
button three |The text presented on the third button shown on the alert. This argument is optional.

Returns

When the alert dialog is presented to the user, the dialog returns 1, 2, or 3 based on which button was
pressed.

Description

Used to give the user an immediate message in a standard alert dialog, or to ask them to pick from up to
three options. The return value can be 1, 2, or 3 to indicate which of three optional buttons were pressed.

Example
alert("The time is now " + Date());

answer = alert("Do you wish to continue?", "Yes", "No");

if (answer == 2)
closeWidget();

appleScript()

executes an AppleScript

Synopsis
appleScript(appleScriptCode[, timeout])

Parameters

Parameter Description

appleScriptCode |A string that contains a complete AppleScript code snippet that you want
to have executed. If the string consists only of a valid file name, then the
code is loaded from that file.

timeout The optional number of seconds to wait for the AppleScript to complete.
For compatibility reasons, the default timeout is 2 seconds.

Description

Using this function, your Widget can control an element of the system or an application using an
AppleScript call.

322 | KONFABULATOR 4.5 REFERENCE MANUAL ﬁ'ﬁ

Global Functions beep()

The AppleScript must be formatted as a nonbreaking line, using new-line characters to indicate a physical
break. We suggest preformatting and validating your AppleScript in Apple's Script Editor application
before using it in a Widget.

The iTunes Remote Widget makes extensive use of the appleScript() call.

Example

// Note the embedded new-Tines that are required

// in AppleScripts.

appleScript('tell application "Safari"\nopen Tocation"' + newURL + '"\nend
tell\n');

beep()

plays the alert sound

Synopsis
beep()
Description

This function causes the user's Mac to beep. This can be useful if you need to get their attention, would
like to notify them of a completed task, or for debugging your Widget's script.

Example
if (done)
beep();

bytesToUIString()

turns a number of bytes into a Ul-friendly string

Synopsis
string = bytesToUIString(integer)
Description
This function turns a given number of bytes into a string such as “1K" or “34.2M."

Example
print("There is

+ bytesToUIString(numBytes) + memory available");

Availability

Available in version 2.0 or newer.

chooseColor()

puts up a standard color picker dialog box and allows the user to choose a color
Synopsis

string = chooseColor([string]);
Description

You can use this function to display the standard color picker for the platform and allow the user to select
a color. You can optionally pass the initial color that is selected as a parameter. This function returns the
color as an RGB hex string (e.g., "#FF0000") or null if the user canceled the dialog.

% KONFABULATOR 4.5 REFERENCE MANUAL | 323

Global Functions chooseFile()

Example
print(chooseColor("#EEEEEE"));

Availability

Available in version 2.0 or newer.

chooseFile()

puts up a standard file dialog box and allows the user to choose a file
Synopsis

file | array = chooseFile([string | array] [, allowMultiple]);
Description

You can use this function to display the standard open dialog for the platform and allow the user to select
a file. You can also optionally pass a single extension or an array of extensions into this function to limit
what kinds of files the user can choose. If the dialog is canceled by the user, null is returned.

The allowMultiple parameter is set to true, the user can choose multiple items in the dialog. In this
mode, the function always returns an array, even if only one item is chosen. If the user cancels the dialog
however, the result is null as in the single item case.

Example
print(chooseFile()); // select anything

print(chooseFile(".png")); // just PNG files

print(chooseFile(new Array(".png", ".jpg")))

files = chooseFile(".png", true); // allow multiple png files
Availability

Available in version 2.0 or newer.

chooseFolder()

puts up a standard file dialog box and allows the user to choose a folder
Synopsis

file = chooseFolder();
Description

You can use this function to display the standard open dialog for the platform and allow the user to select
a folder. If the dialog is canceled by the user, null is returned.

Example
print(chooseFolder());

Availability

Available in version 2.0 or newer.

324 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions convertPathToHFS()

convertPathToHFS()
converts a UNIX-style path to a Mac HFS path

Synopsis
convertPathToHFS(myPath/[, Tocalize])
Description

Converts a UNIX-style path (with “/") to a Mac HFS-style path (with a volume name and “:"). If the
optional second Boolean parameter is true, then the returned path is localized in the current system
language. Note that the file referenced by the path must exist for conversion to succeed if the localized
path is requested.

Example
convertPathToHFS(' /Users/joe/foo.txt"');
Yields:
Macintosh HD:Users:joe:foo.txt
On a German system:
convertPathToHFS('~/Movies', true)
Yields:

Macintosh HD:Benutzer:joe:Filme
Platform Notes

This function returns an empty string on Windows OS.

convertPathToPlatform()

converts a JavaScript-style path to a platform-specific one

Synopsis
convertPathToPlatform(myPath/, forDisplay])
Description

Converts a JavaScript style file path (*/foo/bar/baz") to a platform style path (e.g., on Windows OS,
“\\foo\\bar\\baz"). Note that by default the path is escaped (has any backslashes doubled), ready for
use with runCommand(). If you want a path suitable for display to a user, specify true for the optional
second parameter.

On Mac OS X this function does nothing (paths are already in the correct format).

Example
convertPathToPlatform('c:/temp/foo.txt");

On Windows OS, yields:

c:\\temp\\foo.txt

and

convertPathToPlatform('c:/temp/foo.txt', true);
On Windows OS, yields:

c:\temp\foo.txt

% KONFABULATOR 4.5 REFERENCE MANUAL | 325

Global Functions closeWidget()

closeWidget()
closes the Widget

Synopsis
closeWidget()

Description

Shuts down the currently running Widget as if the user had selected Close Widget from the context
menu.

Example
answer = alert("Do you wish to continue?", "Yes", "No");

if (answer == 2)
closeWidget();

escape()

encodes a string to safely be used as a URL

Synopsis
escape(string)

Attributes

String A string containing text that is intended for use as a URL.

Returns
A string that contains the argument, but with characters unsuitable for URLs converted to their escaped
counterparts.

Description

This is useful if you're collecting information from a user preference that you would like to pass with a
URL. It saves having to validate the strings yourself before passing them off to the URL handler.

Example

// The single quote, spaces and ampersand will be

// replaced with URL escape characters

mySearch = "Konfabulator's FAQ & JavaScript Reference";
openURL ("yahoo.com/search?q=" + escape(mySearch));

See Also
unescape()

focusWidget()
brings the Widget to the foreground

Synopsis
focusWidget()

326 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions form()

Description
Brings the Widget to the foreground on the user's desktop. Useful when responding to a hot key.

Note: If a Widget comes to the foreground when not requested, the user might become annoyed and
will probably trash the Widget.

Example

<hotkey name="hkeyl">
<key>F2</key>
<modi fier>command+control</modifier>
<onKeyUp>focusWidget() ; </onKeyUp>
</hotkey>

form()

generates a preference-like form for acquiring user input through a dialog

Synopsis
form(FfieldArray, [dialogTitle], [confirmButtonlLabel], [cancelButtonlLabell])

Description

form() takes up to four parameters. The first argument is an array of FormField objects (which have the
same parameters as preference objects which are defined in the XML). This array is used to define a
dialog that is displayed to the user. When the user presses the “confirm” button, the form() function
returns an array of strings representing the values entered in the form (if the “dismiss" button is pressed,
null is returned). The remaining parameters are, in order, a title for the dialog, the label for the “confirm”
button, and the label for the “dismiss" button. The last three parameters are optional.

Example

var formfields = Array(Q);

formfields[0] .description = 'This is a description of a text field.';formfields[0] =
new FormField();

formfields[0] .name = 'namel';

formfields[0].type = 'text';

formfields[0].title = 'Text Pref Title';

formfields[0].defaultValue = 20;

formfields[1] = new FormField();
formfields[1].title = 'Basic Field';

formfields[3] = new FormField();

formfields[3].name = 'name4';

formfields[3].title = Checkbox Pref Title';

formfields[3].type = 'checkbox';

formfields[3].defaultValue = 1;

formfields[3].description = 'This is a description of a checkbox field.';

formResults = form(formfields, 'my title', 'Save It And Continue');

if (formResults != null) {
print("formResults = "
} else {
print("form was cancelled");

+ formResults);

}

% KONFABULATOR 4.5 REFERENCE MANUAL | 327

Global Functions getMainDisplay()

getMainDisplay()

returns the main display

Synopsis
Display getMainDisplay()

Description

This returns the main display attached to the computer. This is normally the display with the menu bar on
Mac and the task bar on Windows.

Availability

Available in version 4.5 or newer.

getDisplays()

returns all displays attached to the computer

Synopsis
array getDisplays()

Description

This returns the list of displays attached to the computer as an array. The main display is usually item O.

Availability

Available in version 4.5 or newer.

include()

includes the contents of another JavaScript file

Synopsis
include(string)

Description

Includes the contents of the specified file at the current point in the script. Using include() arranges for
any error messages to have correct file names and line numbers.

Example
include("onload.js");

isApplicationRunning()

returns true if specified application is running

Synopsis
isApplicationRunning(string)

Description

You can use this function to decide if an application is currently running. This is often useful before you do
something like invoke AppleScript on the Mac or COM on Windows OS. Pass the name of the application
you are interested in, not a full path.

328 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions konfabulatorVersion()

Example

// On Mac
if (isApplicationRunning("iTunes"))

// On Windows
if (isApplicationRunning("itunes.exe"))

Platform Notes

This is an area where you have to use the exact name for the platform. As shown above you might use
itunes.exe on Windows, whereas on Macintosh you just use itunes for the application name
parameter.

Availability

Available in version 2.0 or newer.

konfabulatorVersion()

returns the current version of the Widget Engine as a string

Synopsis
konfabulatorVersion()

Description
You can use this function for informational purposes, or to control how your code behaves on different
versions of the Widget Engine.

Example
print("This version is

+ konfabulatorVersion());

log()

displays a string in the debug window with a timestamp

Synopsis
Tog(string)
Description
Often used for debugging. Note that you need to specify:
<debug>on</debug>
in the Widget's XML to see the output.

Example
Tog("idx = " + idx);

openURL()

opens the specified URL in the default web browser

Synopsis
openURL (vaTidURL)

% KONFABULATOR 4.5 REFERENCE MANUAL | 329

Global Functions play()

Description

Using this function to launch a URL causes the URL to be launched using the appropriate application set
in the user's Internet System Preferences. This function returns true if the argument is a well-formed URL,
otherwise false is returned. Note that even a well-formed URL might point to a nonexistent resource so
the Widget Engine would return true while your browser might still complain.

To open a URL and retrieve the response within your widget, use the URL or XMLHttpRequest objects.

Example

openURL("http://widgets.yahoo.com");
openURL("ftp://myname:pa55wOrd@ftp.mysite.com™);

See Also
escape(), unescape(), URL.fetch()

play()

plays a sound file

Synopsis
play(pathToSound[, truncate])

Description

Supported formats are MP3, AIFF, AU, WAV, and SND. The call returns immediately and the sound is
played asynchronously. pathToSound must point to a valid sound file either somewhere on the user's
hard drive, or inside the Widget's bundle. The optional second Boolean parameter specifies whether the
new sound should truncate (stop) any currently playing sounds.

Example

// without Boolean
play("sounds/sample.mp3™);

// with Boolean
play("sounds/bark.aiff", true);

popupMenu()

displays a pop-up menu at a specified location

Synopsis
popupMenu(menultems, X, y);

Description

This function allows you to display a pop-up menu at a specified location. You pass an array of menuItem
objects in the first parameter, much like you would for a context menu. The x and y coordinates are
passed in window coordinates.

You should only call this function while handling a mouse-down event.

Example
// put up a popup menu where the mouse is
<onMouseDown>
var items = new Array;

330 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions print()

items[0] = new Menultem;
items[0].title = "This is item 1";
items[0] .enabled = true;
items[1] = new Menultem;
items[1].title = "this is item 2";
items[1].enabled = true;

popupMenu(items, system.event.hOffset,
system.event.vOffset);
</onMouseDown>

Availability

Available in version 2.1 or newer.

print()

prints a string in the debug window

Synopsis
print(string)
Description
Often used for debugging. Note that you need to specify:
<debug>on</debug>
in the Widget's XML to see the output.

Note that you must be in debug mode. See “Debugging” for more information.
Example

print("idx = + idx);

prompt()

provides a text entry field for user input

Synopsis
prompt(<promptText>, [defaultValue], [dialogTitle],
[confirmButtonlLabel], [cancelButtonlabel])

promptText Prompt to be displayed to the user.

defaultvalue Value to populate the text field with (and the value that will be
returned if the user does not change anything).

dialogTitle Title that will be used for the dialog.

confirmButtonLabel |Label for the button that confirms the user's changes to the dialog.

cancelButtonLabel Label used for the button that cancels the dialog.

Description

Used to get a string of text back from the user. This is a subset of the functionality found in form(), and
is provided for ease of coding. Note that null is returned if the user cancels this dialog.

% KONFABULATOR 4.5 REFERENCE MANUAL | 331

Global Functions random()

Example
result = prompt("Name:", "Your Name","Name Dialog", "OK", "Cancel");

if (lresult)
result = "no name";

See Also
alert(Q

random()

returns a random number

Synopsis
random(/[Tower_Timit, upper_T1imit])

Description

This function generates a random number, optionally within given limits. Note that the lower limit can be
included in the returned values while the upper limit cannot.

Example

// This will return a random number between 0 and 64K
number = random(Q);

// This will return a random number between 0 and 100
percentage = random(100);

// This will return a random number between 27 and 72
number = random(27,72);

reloadWidget()

causes the Widget to reload itself

Synopsis
reloadwWidget()

Description

Calling this function restarts the Widget. This is the same result as if the user had held down the
Command key while choosing the Widget in the dock.

See Also
closeWidget(), focuswWidget()

resolvePath()

normalizes a filesystem file path

Synopsis
resolvePath(pathToFile)

Description
This function can make the following changes in the provided path:

e Expand an initial tilde expression (e.g., ~/Pictures) to the correct directory (e.g., /Users/joe)

332 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions resumeUpdates()

¢ Reduce empty components and references to the current directory (that is, the sequences “//" and
“/./") to single path separators.

¢ In absolute paths only, resolve references to the parent directory (that is, the component “..") to the
real parent directory if possible, which consults the filesystem to resolve each potential symbolic link.

¢ In relative paths, because symbolic links can't be resolved, references to the parent directory are left
in place.

e Remove an initial component of /private from the path if the result still indicates an existing file or
directory (checked by consulting the filesystem).

e If the path is an HFS+ alias, the file name that is the target of the alias is returned (note that this only
works for the final path element, aliases embedded in paths will not be resolved and may have to be
handled specially if expected).

uon

e If the given path is “." it is expanded to the fully qualified path of the current directory.

Example
realPath = resolvePath(myPath);

resumeUpdates()

allows Widgets to visually update dynamically

Synopsis
resumeUpdates()
Description

JavaScript code can affect the layout of all the objects in the Widgets window. If the Widget is complex, it
can be quite inefficient (and possibly unattractive) to have these changes appear individually. By
bracketing areas of code that rearrange the visible parts of the Widget with suppressUpdates() and
resumeUpdates (), the Widget author can control what the user sees.

See Also

suppressUpdates(), updateNow()

runCommand()

executes a shell command and returns the result
Synopsis

runCommand(string)
Description

This function allows any command in the UNIX layer of the operating system to be executed and the
results saved in a string variable. Note that only commands that the user has privileges for can be run.

If the last character of the result is a new line, it is removed.

Example

str = runCommand("1s -1 /™);
print(str);

runCommandinBg()

executes a shell command in the background

Synopsis
runCommandInBg(string, tag)

% KONFABULATOR 4.5 REFERENCE MANUAL | 333

Global Functions saveAs()

Description

This takes a UNIX command and a tag, runs the command in the background (i.e., does not wait for it to
complete) and when it does complete, causes a global action called onRunCommandInBgComplete to be
triggered and sets the value of a variable called tag to the results of the command (the value of
system.event.data is set to the name of the tag). The order in which commands finish might be
unrelated to the order which they were started.

Example
<action trigger="onLoad">
var yahooData;
runCommandInBg("curl www.yahoo.com", "yahooData");
</action>

<action trigger="onRunCommandInBgComplete">
print("onRunCommandInBgComplete for tag: " +
system.event.data);
print("Yahoo's home page is " +
yahooData.length + " bytes");
</action>

Notes

The value of system.event.data changes whenever a background command finishes. This can happen
in the middle of an action if you have multiple commands in the background at one time. You should save
the value at the beginning of the onRunCommandInBgComplete action to avoid unexpected results. Also
note that the tag specifies the name of the variable that will receive the data, not the variable itself.

saveAs()

displays standard Save As dialog box
Synopsis

string = saveAs([string | array])
Description

This function allows you to display the standard dialog box to allow the user to choose a destination
folder and save the file in that location. The path to the folder is returned. If the user canceled the dialog
box, null'is returned.

This function takes an optional string or array of strings as a parameter. This parameter sets the possible
extensions that can be saved, similar to chooseFiTle().

To save a file to the selected path, use filesystem.writeFile.

Example
destination = saveAs();
if (destination != null)

saveFileTo(destination);

destination = saveAs(new Array(".png", ".jpg"));
if (destination != null)
saveFileTo(destination);
Availability

Available in version 2.0 or newer.

334 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions savePreferences()

savePreferences()

saves the Widget's preferences

Synopsis
savePreferences()
Description

Normally a Widget's preferences are automatically saved whenever the user edits them using the Widget
Preferences panel or when the Widget exits. If a Widget is manipulating preference values in JavaScript, it
can ensure they are saved to disk in a timely manner by calling this function.

showWidgetPreferences()

opens the Widget's preference panel

Synopsis
showwWidgetPreferences()
Description

This opens the Widget Preferences panel just as if the user had selected Widget Preferences from the
context menu. It is often used to provide a preferences button on the face of the Widget or to get initial
preferences the first time a Widget runs.

sleep()

suspends script execution

Synopsis
sleep(number)
Description

Suspends execution of the Widget's code for the specified number of milliseconds (one thousandth of a
second).

Example

// pause script for one second
s1eep(1000);

speak()

speaks text

Synopsis
speak(string)
Description

This function speaks the given text in the default voice of the computer (which can be set using the
Speech panel in the System Preferences).

Example

speak ("Now there's something you don't see everyday.");
speak("Unless you're me.");

% KONFABULATOR 4.5 REFERENCE MANUAL | 335

Global Functions suppressUpdates()

suppressUpdates()

makes Widgets wait to visually update

Synopsis
suppressUpdates ()
Description

Suppresses screen updating until a corresponding call to resumeUpdates (). Alternatively, updates can be
performed manually using updateNow(). Suppressing updates can improve performance or hide messy
interim states from the Widget user.

See Also

resumeUpdates(), updateNow()

tellWidget()

sends a message to another Widget

Synopsis
telTWidget(nameOrPath, message);

Description

You can use telTWidget to do inter-Widget messaging. For this to work successfully, the Widget you are
sending the message to must have an onTe11Widget handler. The message is passed in
system.event.data. It's completely up to the Widget author to decide what is an acceptable message.
In its simplest form, you could send JavaScript over and eval () it. That is not very safe however, because
you have no idea what the JavaScript in question might do. So Widget authors might want to consider a
special set of terms that they support using messaging like this. For example, a webcam might support
the “reload" action.

<action trigger="onTellWidget">
if (system.event.data == "reload")
reloadCamPicture();
</action>

In our PIM Overview Widget, we settled on the following structure:

msg = action ":" params

params = (param) (";" param)*
param = name "=" value

action, name, and value are strings. Value could be placed in quotes, perhaps.

This is implemented in AppleScript on Mac OS X and COM on Windows OS. This means you could write
scripts in AppleScript on the Mac, or on Windows, you could use JavaScript, VB, etc., to send messages to
a Widget.

Availability

Available in version 2.0 or newer.

Notes

You can send a message to either the name of the Widget (as long as it is either running, or lives in the
user's Widgets folder), or the path to the Widget. At present, this is a one-way message. Later versions
will allow a response to be sent back.

336 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions unescape()

Platform Notes

Currently, Windows OS will launch the Widget if it can find it. Mac will only launch the Widget if it's not
running and you give it a full path. In the future there will instead be a Boolean parameter to control this
more exactly.

Security Notes

You should always double-check the input message and never eval() the message.

unescape()

unencodes a string that contains URL escapes

Synopsis

unescape(string)

Description

This is the inverse of escape().

Example
encURL = escape(url);

url = unescape(encURL);

updateNow()

forces a Widget's visual update

Synopsis
updateNow()
Description

By using suppressUpdates () and calling updateNow() as needed, the Widget author can completely
control how their Widget is displayed. Note that if your code fails to call updateNow() when updates are
suppressed, the screen might not reflect the true state of the Widget.

Example
updateNow() ;

See Also
resumeUpdates(), suppressUpdates()

yahooCheckLogin()

verifies whether a Widget is currently logged in

Synopsis
boolean yahooCheckLogin()

Description

This function is used to see whether the user is currently logged in to their Yahoo! account. If the function
returns true, they are, and if it returns false, well guess what: they're not. You can use this to predicate
whether or not you can use Yahoo! APIs, which require a logged in user.

% KONFABULATOR 4.5 REFERENCE MANUAL | 337

Global Functions yahooLogin()

Example
var loggedIn = yahooCheckLogin();

See Also

yahoologin(), yahooLogout()

Availability

Available in version 3.0 or newer.

yahoolLogin()

ensures a user is logged in, authenticating if necessary

Synopsis
boolean yahoolLogin()

Description

This function is used to log in to a user's Yahoo! account if you are using Web APIs that require a logged
in user. If yahooCheckLogin() returns false, you would normally call this function. It presents the
standard Yahoo! Widget Engine login dialog to prompt the user for their user name and password.

This call generally works asynchronously. If the user is already logged in, yahooLogin () simply returns
true and you are done. If yahooLogin() returns false, then the user needs to authenticate. This happens
automatically while your Widget is free to do other things. When the user finally authenticates, you
receive notification through the onYahoolLoginChanged action. In there you can call
yahooCheckLogin() to see if the user is now logged in.

In general, you should always wait for the onYahooLoginChanged event if you are not logged in when
your Widget starts up before trying to do anything with APIs that require a logged-in user.

Example
var loggedIn = yahooCheckLogin(Q);

if (!loggedIn)
yahoolLogin(Q);

// go about our business while the user authenticates.

// In your XML:
<action trigger="onYahoolLoginChanged">
if (yahooCheckLogin())
RefreshInformation();
else
LoggedOut();
</action>

Notes

In our onYahooLoginChanged action we also have to deal with the case where we've logged out. When
this happens, you might need to clear your display and present a way for the user to log in again. You
might get logged out at unexpected times, so you must be prepared to deal with this.

Availability

Available in version 3.0 or newer.

338 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Global Functions yahooLogout()

See Also

yahooCheckLogin(), yahooLogout()v

yahooLogout()

logs out of a user's Yahoo! account

Synopsis
yahooLogout()

Description

This function requests that the Widget Engine log out of a user's Yahoo! account. This returns
immediately while the request is pending. On completion, all Widgets receive an onYahooLoginChanged
action and yahooCheckLogin returns false. Widgets must be prepared to deal with the situation where
the user has logged out. This might happen if the previously valid credentials have timed out, so always
be prepared to deal with a logout. Also, keep in mind this call affects all Widgets that require the user's
Yahoo! credentials to use Yahoo! APIs, not just the current Widget.

Example
yahoolLogout();

// go about our business while the logout occurs.

// In your XML:
<action trigger="onYahoolLoginChanged">
if (yahooCheckLogin(Q))
RefreshInformation();
else
LoggedOut();
</action>

Availability
Available in version 3.0 or newer.

See Also

yahooCheckLogin(), yahoolLogin()

% KONFABULATOR 4.5 REFERENCE MANUAL | 339

Global Functions yahooLogout()

340 | KONFABULATOR 4.5 REFERENCE MANUAL #o

XML Services

About XML Services

The Widget Engine provides several mechanisms for dealing with XML. With these services, you can
create, parse, and manipulate XML trees. You can also use the built-in implementation of
XMLHttpRequest, a pseudo-standard for fetching XML off of web servers.

The parsing and creating of XML documents is done with the global XML object. From there, you can use
standard W3C Level 1 DOM APIs to manipulate the XML tree. To make it even easier to extract data
from a tree, we provide an XPath 1.0 implementation using the node.evaluate() addition.

XMLDOM Object

The XMLDOM global object allows you to parse and create XML documents. Note that per the Level 1
DOM API you cannot create DOMNode entities using new. You must use the XMLDOM object to create a
document and the document itself to create elements to attach to the document (i.e., the DOMDocument is
the factory for all elements, text items, comments, etc.).

XMLDOM.createDocument()

creates a new, empty DOMDocument
Synopsis

doc = XMLDOM. createDocument();
Description

This function allows you to create a new DOMDocument element. From there you can use the
DOMDocument API to create elements to add to the document, as specified in the W3C Level 1 DOM
specification.

Example

doc = XMLDOM. createDocument();

root = doc.createElement("root");
doc.appendChild(root);

print(doc.toXML(O));

Availability

Available in version 3.0 or newer.

XMLDOM.parse()

parses XML and yields a DOMDocument

Synopsis
doc = XMLDOM.parse(xml);

Description

This parse function parses the given XML string (gotten either from a web server or using a call such as
filesystem.readFile()) and returns a DOMDocument node. The document node is a W3C Level 1
DOMDocument and conforms to the API as specified by the W3C (modulo some omissions such as entity
objects).

% KONFABULATOR 4.5 REFERENCE MANUAL | 341

XML Services: XMLHttpRequest XMLDOM .parse()

If the XML fails to parse, an exception is thrown containing the error string. You should always call
XML .parse inside a try/catch block to deal with failures.

Example

try
{

doc = XMLDOM.

parse(xmlStream);

root = doc.documentElement;

}
catch(e)

{
}

print(e);

Availability

Available in version 3.0 or newer.

XMLHttpRequest

fetches an item off of an HTTP server

XML Name
Not available.
JavaScript Name
XMLHttpRequest
Description

The XMLHttpRequest object is very much like the URL object that has existed in the Widget Engine since
very early on. XMLHttpRequest is, however, a de facto standard for doing XML over HTTP in web
browsers, so its addition here is to provide people with an easier migration path when moving AJAX code
over to the Widget Engine, as well as simply trying to adhere to standards so developers find it more
approachable.

Attributes

XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.

Functions

XMLHttpRequest.
XMLHttpRequest.
XMLHttpRequest.
.open()
XMLHttpRequest.
XMLHttpRequest.

XMLHttpRequest

autoRedirect
onreadystatechange
readyState
responseText
responseXML

status

statusText

timeout

abort()
getAl1ResponseHeaders ()
getResponseHeader()

send()
setRequestHeader()

342 | KONFABULATOR 4.5 REFERENCE MANUAL

XML Services: XMLHttpRequest XMLHttpRequest.autoRedirect

XMLHttpRequest.autoRedirect

controls whether redirection is handled automatically

Synopsis
XMLHttpRequest.autoRedirect

Description
This attribute allows you to control whether a request handles redirects automatically.

In versions prior to 4.0, redirection was disabled. Widgets were required to handle the 302 status
themselves and do a manual redirect. Version 4.0 or newer adds automatic redirection as well as
automatic cookie handling to simplify web connections that use redirected authentication. To enable this
automatic behavior, you must set your minimumVersion to 4.0 in your Widget. This allows older Widgets
to operate as they always did. If you need to manually handle a redirect, you can set this attribute to
false.

Example

var request = new XMLHttpRequest();
request.autoRedirect = false;

request.open("GET", "http://www.yahoo.com", true);
request.send();

Availability

Available in version 4.0 or newer.

XMLHttpRequest.onreadystatechange

function to call as an async request is processed

Synopsis
XMLHttpRequest.onreadystatechange

Description

If a request is sent asynchronously (see XMLHttpRequest.open() you must specify a function to be called
as the status of the request changes. No parameters are passed to this function. When your function is
called, “this" refers to the request. Generally, you'll only care when the readyState of your request is
the value 4 (complete).

Example
var request = new XMLHttpRequest();
request.onreadystatechange = myStatusProc;
request.open("GET", "http://www.yahoo.com", true);
request.send();

// someplace else
function myStatusProc()

{
if (this.readyState == 4) // complete
{
print(this.status);
3
3

% KONFABULATOR 4.5 REFERENCE MANUAL | 343

XML Services: XMLHttpRequest XMLHttpRequest.readyState

Availability

Available in version 3.0 or newer.

XMLHttpRequest.readyState

current state of the request

Synopsis
XMLHttpRequest.readyState (read-only)

Description

This is used to determine the current state of the request. This is typically only used when sending an
asynchronous request in your onreadystatechange function.

The values for readyState are:

0 uninitialized
1 loading

2 loaded

3 interactive
4 complete

The Widget Engine only sets the readyState to O, 1, or 4 in version 3.0.

Example

var request = new XMLHttpRequest();
request.onreadystatechange = myStatusProc;
request.open("GET", "http://www.yahoo.com", true);
request.send();

// someplace else
function myStatusProc()

{
if (this.readyState == 4) // complete
{
print(this.status);
}
}
Availability

Available in version 3.0 or newer.

XMLHttpRequest.responseText

text returned by the request

Synopsis
XMLHttpRequest.responseText (read-only)
Description

This attribute contains the text returned by the web server for the request you sent. Typically this is a web
page or XML.

344 | KONFABULATOR 4.5 REFERENCE MANUAL #o

XML Services: XMLHttpRequest XMLHttpRequest.responseXML

Example

var request = new XMLHttpRequest();
request.open("GET", "http://www.yahoo.com", false);
request.send();
if (request.status == 200)
print(request.responseText);

Availability

Available in version 3.0 or newer.

XMLHttpRequest.responseXML
XML DOM returned by the request

Synopsis
XMLHttpRequest.responseXML (read-only)

Description

If the response to the request returned data with a content type of text/xm1, this attribute contains the
DOMDocument node representing the XML document (i.e., it is automatically parsed and ready for use). If
the document cannot be parsed, or the content type is not text/xm1, this attribute is set to null.

Example

var request = new XMLHttpRequest();
request.open("GET", "http://www.yahoo.com", false);
request.send();
if (request.status == 200)
print(request.responseXML.toXML());

Availability

Available in version 3.0 or newer.

XMLHttpRequest.status

returns the status of the response

Synopsis
XMLHttpRequest.status (read-only)

Description
This attribute represents the HTTP status code returned by the server, e.g., 200, 404.

Example

var request = new XMLHttpRequest();

request.open("POST", "http://www.yahoo.com", false);

request.setRequestHeader("Content-type", "text/xml");

request.send(xml);

if (request.status == 200) // success!
DoSomethingWonderful();

Availability

Available in version 3.0 or newer.

% KONFABULATOR 4.5 REFERENCE MANUAL | 345

XML Services: XMLHttpRequest XMLHttpRequest.statusText

XMLHttpRequest.statusText

returns the status text of the response

Synopsis
XMLHttpRequest.statusText (read-only)

Description

This attribute represents the HTTP status text returned by the server, e.g., “OK,"” “Not Found." These
exactly correspond to the codes returned through status. Normally, you use status and not statusText.

Example

var request = new XMLHttpRequest();

request.open("POST", "http://www.yahoo.com", false);

request.setRequestHeader("Content-type", "text/xml");

request.send(xml);

if (request.statusText == "OK") // success!
DoSomethingWonderful();

Availability

Available in version 3.0 or newer.

XMLHttpRequest.timeout

length of time to wait for a response from the server

Synopsis
XMLHttpRequest.timeout

Description

This attribute sets the time to wait for a server response. The default timeout for a request is 60 seconds.
You can only set timeout for an integral number of seconds. This attribute can only be set while the
request is in the open state. That is, after calling open() but before calling send(). Otherwise an
exception is generated.

Example
var req = new XMLHttpRequest();

req.open(“http://www.yahoo.com”; , true)
req.timeout = 120; // two minutes
req.send(Q;

Availability

Available in version 4.5 or newer.

XMLHttpRequest.abort()

aborts an async request

Synopsis
XMLHttpRequest.abort()

346 | KONFABULATOR 4.5 REFERENCE MANUAL #o

XML Services: XMLHttpRequest XMLHttpRequest.getAllResponseHeaders()

Description

If true was passed for the async parameter of open(), this call can be used to terminate the request if it
is still outstanding.

Example
request.abort();

Availability

Available in version 3.0 or newer.

XMLHttpRequest.getAllResponseHeaders()

returns all the headers from a response

Synopsis
array XMLHttpRequest.getAl1ResponseHeaders()

Description

After a request is complete, this call can be used to retrieve all the headers returned with the response as
an array of strings.

Example
var headers = request.getAl1ResponseHeaders();

Availability

Available in version 3.0 or newer.

XMLHttpRequest.getResponseHeader()

returns one or more headers from a response by name

Synopsis
string|array XMLHttpRequest.getReponseHeader(string)
Description

After a request is complete, this call can be used to retrieve one or more headers with the given name. If
there is only one header, it returns a single string result. If there are multiple, it returns an array of
matches.

Example
var cookies = request.getResponseHeader("Set-Cookie");

Availability

Available in version 3.0 or newer.

XMLHttpRequest.open()

sets up a request for sending

Synopsis
XMLHttpRequest.open(method,url,async);

% KONFABULATOR 4.5 REFERENCE MANUAL | 347

XML Services: XMLHttpRequest XMLHttpRequest.send()

Description

This sets up a request for sending. You pass the method, the URL, and a flag indicating whether you wish
to send this request asynchronously. Note that at present, we do not support the traditional user name
and password parameters. They might be supported in a later release.

Valid values for the method parameter are GET, POST, HEAD, OPTIONS, PUT, and DELETE.

Example

var request = new XMLHttpRequest();
request.onreadystatechange = myStatusProc;
request.open("GET", "http://www.yahoo.com", true);
request.send();

Availability

Available in version 3.0 or newer.

XMLHttpRequest.send()

sends the request to the server

Synopsis
XMLHttpRequest.send([body])
Description

This function sends the data to the server. You can optionally pass data to be passed as the body of the
HTTP request into this function.

Example

var request = new XMLHttpRequest();
request.open("POST", "http://www.yahoo.com", false);
request.send(someXML);

Availability

Available in version 3.0 or newer.

XMLHttpRequest.setRequestHeader()

sets a request header

Synopsis
XMLHttpRequest.setRequestHeader(name,value)
Description
This function adds a header to a request, potentially replacing any existing header with the same name.

Example

var request = new XMLHttpRequest();

request.open("POST", "http://www.yahoo.com", false);
request.setRequestHeader("Content-type", "text/xml");
request.send(xml);

Availability

Available in version 3.0 or newer.

348 | KONFABULATOR 4.5 REFERENCE MANUAL #o

XML Services: XPath Support XMLHttpRequest.setRequestHeader()

XPath Support

brief overview of XPath

Starting in version 3.0, the Widget Engine supports the XPath 1.0 language for extracting nodes and
node information from an XML tree. XPath is far easier and more straightforward, so it's unlikely that you
will use the raw DOM API to extract node information. This section explains how XPath is integrated into
the Widget Engine and how you access it. It also demonstrates some examples of how it can be used.

This is only a brief explanation. For full documentation, consult the w3c.org web site on XPath 1.0.
First, let's define an example XML tree:

<?xml version="1.0" encoding="utf-8"?>
<my-data>
<elementl name="fred" size="200">
This is some text
</elementl>
<image-Tlist>
<image size="32"
src="http://www.yahoo.com/image.png" />
<image size="48"
src="http://www.yahoo.com/image2.png"/>
</image-Tist>
</my-data>

Now let's try to do some specific things. Normally, XPath returns a list of nodes. The Widget Engine
returns those nodes as a DOMNodeL1i st. XPath also starts at a “context node,"” i.e., where the XPath
search should be relative to. You can also specify a search to start at the top by starting the path with a
“/". Let's say you have the document node in a variable called doc:

element = doc.evaluate("my-data/elementl");

The above example fetches all nodes that match the path “my-data/element1” (in this case, one node)
and returns them as a node list.

images = doc.evaluate("my-data/image-1list/image");

The above statement returns all the nodes that match the given path. This time, we'll get a node list back
with two elements (the two child nodes of image-list).

This is XPath at its simplest—just selecting nodes out of a document. Now we'll get a little fancier. Let's
say we want to select the image that has a size of 48. We can use a predicate for this. A predicate is a
condition applied to the search. It filters the results to those that match the condition.

image = doc.evaluate("my-data/image-list/image[@size="48"']");

This says “find me all items that match this path, but only the ones whose size attribute has the value
48." The @ symbol is shorthand for specifying that you are looking for an attribute. The longhand for the
predicate would be [attribute::name="48"].

Now, if you wanted to get the src attribute for that image, do this:
src = image.item(0).getAttribute(src);

But there's an easier way as we'll see in a second. First, let's extract some text. Let's say we want the text
inside elementl. Here's one way to do this:

element = doc.evaluate("my-data/elementl");
text = element.item(0).firstChild.data;

% KONFABULATOR 4.5 REFERENCE MAANUAL | 349

XML Services: XPath Support XMLHttpRequest.setRequestHeader()

We need to know that element is a node list, so we extract item O and then ask it for its first child (since
the text is a subnode of elementl as far as the XML tree goes). Then we get its data. Well, that's cute,
but it's somewhat complicated. Fortunately, XPath has functions you can call to make life easier. We'll use
the string() function:

text = doc.evaluate("string(my-data/elementl)");

That's it. The string() function takes the result of the expression passed to it and turns it into a string.
For element nodes, it takes all the text subelements under it, concatenates them, and returns them. In our
case, we only had one element and one text node, so we got the exact result we wanted. For attribute
nodes, string() returns the value of the attribute. Now we can revisit our attempt above to get the src
attribute of the image with size 48:

src = doc.evaluate("string(my-data/image-Tlist/image[@size='48"']/attribute::src)"

);

This time, we used the same basic path as before, but added another path segment to extract the src
attribute from the result and then the string function returned the value of that attribute.

There are various things you can search for in the XML using XPath, and many ways to search. You can
find elements with certain parents, you can fetch elements who have a particular subelement, and so on.
Consult the full XPath 1.0 specification on the w3c.org web site for more information.

350 | KONFABULATOR 4.5 REFERENCE MANUAL #o

The Converter Tool

Version 3.1 and newer of the engine supports a new flat-file format for Widgets. To generate this format
a “Converter" command-line tool was created. This tool is used by the “Widget Converter"” utility, but
you can also use the tool itself on the command line to do automated Widget builds with no UI.

The tool converts between bundle format and flat-format. It can also be used to digitally sign a Widget.
To sign and be fully validated, you must have a Netscape Code Signing certificate from VeriSign. Other
root certificate authorities will be supported in the future. If you sign a Widget with another type of
certificate, the integrity can be verified, but the engine can't validate the authenticity of the signature
(i.e., we won't be able to tell for sure that you are you). This type of information is shown to the user
when your Widget is run for the first time (and if the Widget somehow becomes modified).

Following is the syntax for the converter tool on Mac OS X:

converter [-v] [-1ist] [-flat | -unflat] [-sign -key host.key -cert
certfile [-p foo | -pf passfile]] [-verify] file-or-bundle
[-o0 output-dir]

Following is the syntax for version 1.1 of the converter tool on Windows OS:

converter [-v] [-Tist]
[-fTat | -unflat]
[-sign [-cert certfile [-p foo | -pf passfile]] | -certui]
[-verify]
file-or-bundle
[-o output-dir]

Prior to version 4.0, both Mac OS and Windows OS used the same syntax, but 4.0 now uses the built-in
cryptography of the OS to save on bulk, so the syntax is different. For Windows, you specify the
certificate in a .pfx or .p12 file. This file will normally also have the private key inside it. Since the system’s
crypto system is being used, you can also use the -certui option instead of passing a certificate and you
can choose a signing certificate from your personal certificate store using the standard Windows Ul.

Operations
-list
Lists the contents of a flattened Widget.
-flat
Flattens a Widget bundle.

-unflat
Unflattens a Widget bundle.

Signing Options
-sign [sign-params]
Signs a Widget after flattening it (if -f1at is specified) or signs an already flattened Widget.
-verify
Verifies the signature of a Widget.

Signing Parameters
-cert

The certificate file (. pem format) to sign with.

% KONFABULATOR 4.5 REFERENCE MANUAL | 351

The Converter Tool

-certui
Use the standard MS Windows certificate Ul to choose a certificate (Windows XP and newer only).
-key
The private key to sign with (. pem format). It must be the private key that corresponds. Not
supported on MS Windows as of version 1.1 of the converter tool. The key should instead be
stored in your .p12 or .pfx file.
-p | -pf [filenamel]

You can specify the password to use for a password-protected private key file directly on the
command line with -p. You can instead use -pf if you want to specify the password in a file. This
is useful for automating the build process for a Widget without putting the password into source
control.

Options
-V
Verbose mode. Prints the tool version and status along the way.
-0 [output-dir]
Specifies the output directory to put the converted/signed file.

352 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Windows OS and Mac OS X Differences

This section points out the differences between the Mac OS X and Windows OS versions of the Widget

Engine.

Hot Keys
Paths

UNIX Commands

Perl and PHP

UNIX Commands
Command Key
Key Names

Yahoo! Widget Engine's roots are in the first version of Konfabulator for Mac OS X. Because the Widgets
were originally written with a BSD environment under them, they could make use of various UNIX system
commands. When the product was ported to Windows OS, it was decided to retain a subset of

commands to enable the same Widget to function on both Mac and Windows.

Over time, it was discovered that not that many Widgets took advantage of these utilities, or at best only

took advantage of a small number of them. Also, the utilities took up 4.7MB of hard disk space. As a

result, they are no longer a part of the engine's base install package in version 4.0 and newer. However,
they are still available as a separate download.

In general, these utilities are considered to be deprecated and instead you are encouraged to use built-in
functions of the engine, or to use the native commands in the OS. Another alternative is to just package
one of the utilities in your Widget bundle itself.

Following is a list of the utilities in the package:

basename
cal
compress
dc
dirname
expand
fold
gzip
lesskey
md5sum
paste

rm

sleep
tail
uname
uuencode
yes

In addition, zsh is also available to run shell scripts.

bc

cat

cp

dd

du
expr
fsplit
head
Tn
mkdir
patch
rmdir
sort
tar
unexpand
wc
zcat

bunzip2
cksum
curl

df

echo
fgrep
gawk

id
Togname
mv

pr
sdiff
split
tee
uniq
which
zip

bzip2
cmp
cut
diff3
egrep
find
grep
join
1s

od
printenv
sed
sum
touch
unzip
whoami

bzip2recover
Comm.
Date
Diff

Env

Fmt
Gunzip
Less

m4

Open

Pwd

Shar
Sync

Tr
Uudecode
Xargs

o,

KONFABULATOR 4.5 REFERENCE MANUAL

353

Windows OS and Mac OS X Differences: Command Key

Command Key

In Windows OS, the Control key takes the place of the Mac's Command key. For example, to drag a
Widget, use Control-drag. This also affects hot keys, as described below.

Key Names

The naming of keys comes from the original Mac key naming, and we cannot change it. So, when you
press the Delete key on a Windows OS keyboard, you receive ForwardDelete. If you press Backspace,
you receive Delete. On Mac keyboards, Return and Enter are two distinct keys. However, on most
Windows OS keyboards, there is an Enter key but no Return key. We currently return Return for the
Enter key on Windows OS. This is an important platform distinction to be aware of.

Hot Keys

If you install a hot key that was cmd-control-<key> it will just be control-<key> on Windows OS (since
there's no Command key).

When registering a hot key on Windows OS, the key is exclusive, which is different from Mac OS. So
multiple Widgets cannot register for the same hot key. The second one to try is denied the hot key.
Unfortunately, we don't have any way for the Widget to know this at present.

F1 typically shouldn't be used, as it is the Help key. F12 is reserved on 2000/XP and latest NT variants for
the debugger.

There is no notification on release of the key. Only press, so anyone's onKeyUp handler never gets fired on
Windows OS.

Certain hot key sequences are illegal, such as alt-tab and ctrl-alt-delete.

Paths

The native path system of Mac OS X is UNIX-style, or forward-slashed paths. Windows OS has a drive
letter and backslashes. The Widget Engine considers its native path style to be forward-slashed paths. This
is because of Mac and JavaScript heritage, which is forward-slashed.

If you use runCommand to call UNIX or Windows OS functions, you need to take care to convert paths
appropriately. The UNIX commands can accept forward- or backward-slashed paths. Windows OS
commands, however, must get backward-slashed paths. To convert between the two, you should use the
convertPathToPlatform function. However, there is currently no function to convert from Windows
OS style to UNIX/JavaScript style.

convertPathToHFS returns an empty string on Windows OS.

Perl and PHP

There is no Perl or PHP support in the Widget Engine for Windows OS. The size is prohibitive to be a
standard part of our install, so we recommend that those Widgets that demand Perl point users to an
appropriate Perl environment for the PC.

354 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Appendix A: DTDs

A Document Type Definition (DTD) defines the formats of XML files. A DTD can be declared in your XML
document, or as an external reference. You can use a DTD with an editor such as Oxygen to help validate
your XML documents.

Metadata DTD

<!l--
Widget Metadata DTD
Version 4.0
Copyright (c) 2007 Yahoo! Inc. ATl Rights Reserved.

This DTD module is identified by the PUBLIC and SYSTEM identifiers:
PUBLIC "-//YAHOO//DTD Widget Metadata 4.0//EN"
SYSTEM "http://widgets.yahoo.com/engine/DTD/widget-meta-4.0.dtd"
-—>
<?xml version="1.0" encoding="UTF-8"7>
<!ELEMENT metadata
(name|version|identifier|image|author|copyright|description|platform|security)*>

<!-- name -->
<!ELEMENT name (#PCDATA)>

<!-- version -->
<!ELEMENT version (#PCDATA)>

<!-- didentifier -->
<!ELEMENT didentifier (#PCDATA)>

<!-- image-->

<!ELEMENT 1image EMPTY>

<!ATTLIST 1image
usage (dock|security) #REQUIRED
src CDATA #REQUIRED

>

<!-- author -->

<!ELEMENT author EMPTY>

<!ATTLIST author
name CDATA #IMPLIED
organization CDATA #IMPLIED
href CDATA #IMPLIED

>

<!-- copyright -->
<!ELEMENT copyright (#PCDATA)>

<!-- description -->
<!ELEMENT description (#PCDATA)>

<!-- platform -->
<!ELEMENT platform (#PCDATA)>
<!ATTLIST platform

minVersion CDATA #IMPLIED

% KONFABULATOR 4.5 REFERENCE MANUAL | 355

Appendix A: DTDs: Widget Dock Item DTD

os CDATA #IMPLIED
>

<l-- security -->
<!ELEMENT security (api)*>
<!ELEMENT api (#PCDATA)>

Widget Dock Item DTD

<!l--
Widget Dock Item DTD
Version 4.0
Copyright (c) 2007 Yahoo! Inc. ATl Rights Reserved.

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//YAHOO//DTD Widget Dock Item 4.0//EN"

SYSTEM "http://widgets.yahoo.com/engine/DTD/widget-dock-4.0.dtd"
-=>

<?xml version="1.0" encoding="UTF-8"?7>
<!ELEMENT dock-item (frame|text|image)*>
<!ATTLIST dock-1item

version CDATA #REQUIRED

transparent (true|false) #IMPLIED
>

<!-- frame -->
<!ELEMENT frame (text|image|frame)*>
<!ATTLIST frame
hOffset CDATA #REQUIRED
vOffset CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
hATign (left|center|right) #IMPLIED
vAlign (top|center|bottom) #IMPLIED
visible CDATA #IMPLIED
rotation CDATA #IMPLIED
hRegistrationPoint CDATA #IMPLIED
vRegistrationPoint CDATA #IMPLIED
>

<!-- image -->

<!ELEMENT -1image EMPTY>

<!ATTLIST image
hOffset CDATA #REQUIRED
vOffset CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
hATign (left|center|right) #IMPLIED
vATlign (top|center|bottom) #IMPLIED
visible CDATA #IMPLIED
rotation CDATA #IMPLIED
hRegistrationPoint CDATA #IMPLIED
vRegistrationPoint CDATA #IMPLIED
colorize CDATA #IMPLIED
hs1Tinting CDATA #IMPLIED

356 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Appendix A: DTDs: Widget Dock Item DTD

hsTAdjustment CDATA #IMPLIED
>

<!-- text -->

<!ELEMENT text (#PCDATA)>

<!ATTLIST text
hOffset CDATA #REQUIRED
vOffset CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
hATign (left|center|right) #IMPLIED
vAlign (top|center|bottom) #IMPLIED
visible CDATA #IMPLIED
rotation CDATA #IMPLIED
hRegistrationPoint CDATA #IMPLIED
vRegistrationPoint CDATA #IMPLIED
truncation (end|middle|none) #IMPLIED

% KONFABULATOR 4.5 REFERENCE MANUAL | 357

Appendix A: DTDs: Widget Dock Item DTD

358 | KONFABULATOR 4.5 REFERENCE MANUAL #o

Acknowledgments

This software contains the Cairo graphics software, version 1.2.6. For the various copyright notices and
attributions, see

http://cairographics.org.

% KONFABULATOR 4.5 REFERENCE MANUAL | 359

http://cairographics.org

Acknowledgments:

360 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

Symbols

< and > symbols, 24

A

About Box
attributes, 71
image, 72
object description, 71
text, 72
version, 73
Action
file, 74
interval, 74
object description, 73
trigger, 74
actions
triggered automatically, 73
AirPort information, accessing, 256
alerts
displaying dialog, 322
playing sounds, 323
alignment
horizontal, 51
vertical, 61
alpha values
global, 79
specifying opacity, 58
Animation
CustomAnimation(), 289
FadeAnimation(), 290
kill(), 289
MoveAnimation(), 291
object description, 286
ResizeAnimation(), 292
RotateAnimation(), 292
animation
adjusting opacity, 130, 290
changing coordinates, 130
changing position, 291
custom, 289
ease effects, 287
moving text, 167
resizing, 292
rotating, 292
running, 288
sliding, 131
starting asynchronous, 288
terminating, 289
text scrolling, 163
timebase, 287
working with, 286
animator
ease(), 287

milliseconds, 287

object description, 286

runUntilDone(), 288

start(), 288
APIs

accessing, 157

credential specifications, 39

DOM, 39

XML DOM, 44
AppleScript, executing, 322
applications, checking status, 328
archives, see Zip archives
arcs, adding to current path, 83
arrays

reading files into, 249

writing to files, 251
attributes

common, see common attributes and functions

naming, 27

nodes, 48
authors, 187

background
color, 298
fill color, 307
fixed and scrolling images, 297
image, 298
positioning of image, 299
repeating images, 300
battery information, 259 to 261
behavioral settings, 194
bevel joins, 81
bezier curves, adding to paths, 84
bitmaps
free-form drawing, 76
saving, 71

C

Canvas
attributes, 76
getContext(), 77
object description, 76
canvases
compositing mode, 79
drawing images, 88
drawing into the context, 78
fill styles, 78
line cap styles, 80
redrawing, 84
stroking paths, 81
CanvasRenderingContext2D
addColorStop(), 82

o,

KONFABULATOR 4.5 REFERENCE MANUAL

361

Index

arc(), 83
attributes, ?? to 82

identifying, 316
number in current row, 314

beginPath(), 83 setting number in text areas, 170

bezierCurveTo(), 84
clearRect(), 84

clip(), 85

closePath(), 85
createLinearGradient(), 86
createPattern(), 86
createRadialGradient(), 87
drawlmage(), 88

COM
connectObject, 240
createObject, 241
disconnectObject, 241
object description, 239
COM interface
calling, 239
disconnecting events, 241

fill(), 88 listening to events, 240
fillRect(), 89 Command key, 354

fillStyle, 78 comment nodes, 47, 49
functions, ?? to 95 common attributes and functions
globalAlpha, 79 addSubview(), 65
globalCompositeOperation, 79 appendChild(), 65

lineCap, 80 contextMenultems, 51
lineJoin, 80 convertPointFromParent(), 66
lineTo(), 89 convertPointFromWindow(), 66
lineWidth, 81 convertPointToParent(), 67
miterLimit, 81 convertPointToWindow(), 67

moveTo(), 90

object description, 77

quadraticCurveTo(), 90

rect(), 91

restore(), 91

rotate(), 92

save(), 92

scale(), 93

stroke(), 94

strokeRect(), 94

strokeStyle, 81

translate(), 95
CDATA sections

DOM node, 49

certificates, digital signatures, 32

child objects
adding, 65
removing, 70
clipboard, accessing, 261
CLSID, 241
colors
adding stops, 82
choosing, 323
CSS usage, 295
filling canvases, 78

foreground text content, 301

HSL tweaking, 126

images, 124

object background, 298

shadows, 159, 308

specification methods, 295

stroking paths, 81

text, 162

text areas, 168

text background, 161

text in text areas, 169
columns

firstChild, 53
getElementByld(), 68
hAlign, 51

height, 52

hOffset, 52

id, 53

lastChild, 54

name, 54
nextSibling, 55
onClick, 56
onContextMenu, 56
onDragDrop, 56
onDragEnter, 56
onDragkExit, 56
onMouseDown, 56
onMouseDrag, 56
onMouseEnter, 57
onMouseExit, 57
onMouseMove, 57
onMouseUp, 57
onMouseWheel, 57
onMultiClick, 57
opacity, 58
orderAbove(), 68
orderBelow(), 69
parentNode, 58
previousSibling, 55
removeChild(), 70
removeFromParentNode(), 70
removeFromSuperview(), 70
savelmageToFile(), 71
style, 59

subviews, 59
superview, 60
tooltip, 60

tracking, 61

vAlign, 61

362 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

visible, 62
vOffset, 63
width, 63
window, 64
zOrder, 64
common styles, CSS, 296 to 310
compositing mode, 79
containers, frame objects, 114
context menus
array of items, 51
associating actions, 133
checkmarks, 132
display text, 133
displaying pop-ups, 330
enabling items, 133
menu item settings, 132
specifying, 56, 217
Control key, 354
converter tool
digital signatures, 32
overview, 351
syntax examples, 351
copyright info, specifying, 188
CPU, getting information, 262 to 264
credentials, specifying for APIs, 39
CSS styles
background, 296
backgroundAttachment, 297
backgroundColor, 298
backgroundimage, 298
backgroundPosition, 299
backgroundRepeat, 300
color, 301
colors, 295
common, 296 to 310
fontFamily, 301
fontSize, 302
fontStretch, 303
fontStyle, 304
fontWeight, 304
information, 59
opacity, 305
reference, 295
textAlign, 306
textDecoration, 306
usage and limitations, 295
YWEBackgroundFill, 307
YWEShadow, 308
YWEShadowColor, 308
YWEShadowOffset, 309
YWETextTruncation, 310
current transformation matrix (CTM)
rotating, 92
scaling, 93
translating, 95
curves
bezier, 84
quadratic, 90

D

databases
closing, 312
creating, 312
object features, 311
opening, 312
query results, 314
DataEvent, 206
debug window
display, 188
logs, 329
printing strings, 331
debugging mode
about, 38
accessing, 39
dialog boxes, displaying Save As, 334
digital signatures, 32
directories
creating, 243
creating archives, 251
deleting permanently, 250
determining status, 246
displaying items, 249
listing contents, 244
displays
return list, 328
return Main, 328
dock
checking status, 189
closed status, 191, 218
customizing, 196
DTD, 356
example XML file, 28
icon specifications, 28
open status, 191, 218
sample Widget, 29
stylizing vitality, 29
working with, 28
Document Type Definition (DTD), about, 355
documents, creating, 341
DOM, 43
creating documents, 341
DOMAttribute, 48
DOMCDATASection, 49
DOMCharacterData, 47
DOMComment, 49
DOMDocument, 44
DOMDocumentType, 49
DOMElement, 48
DOMEntity, 49
DOMEntityReference, 49
DOMException, 44
DOMNamedNodeMap, 46
DOMNode, 45
DOMNodelist, 46
DOMNotation, 49
DOMProcessinglnstruction, 49
DOMText, 48

o,

KONFABULATOR 4.5 REFERENCE MANUAL

363

Index

object description, 44
DOMEvent, 206
drag events, 229
DragDropEvent, 209
drawings, global alpha settings, 79

elements
finding by ID, 68
nodes, 48

entities
nodes, 49
reference nodes, 49

error information, SQLite, 318

Events
DataEvent, 206
DOMEvent, 206
DragDropEvent, 209
FlashEvent, 210
KeyboardEvent, 208
MouseEvent, 207
TextEvent, 206
WebEvent, 210

events
click, 226
contextmenu, 217
creenchanged, 222
dockclosed, 218
dockopened, 218
drag, 229
dragdrop, 212
dragenter, 213
dragexit, 213
firstdisplay, 219
fscommand, 214
fsreadystate, 214
gainfocus, 219
getting information, 264 to ??
idle, 220
keydown, 215
keypress, 216
keyup, 216
konsposedeactivated, 220
load, 221
losefocus, 221
mousedown, 227
mousedrag, 227
mouseenter, 228
mouseexit, 228
mousemove, 229
mouseup, 229
mousewheel, 230
multiclick, 230
preferencescancelled, 222
preferenceschanged, 222
simple move, 229
tellwidget, 211
textinput, 231

timer, 223

timerfired, 223

unload, 224

valuechanged, 224
wakefromsleep, 225
webalert, 232

webconfirm, 232
webcreatewindow, 233
webexception, 233
weblinkclicked, 233
webpageloadcomplete, 234
webprompt, 234
webresourceloadcomplete, 235
webresourcerequested, 235
webstatusbarchanged, 235
webtitlechanged, 236
weburlchanged, 236
willchangepreferences, 225
yahoologinchanged, 225

exceptions, 39

files

choosing, 324

copying, 243

creating archives, 251

deleting permanently, 250
display names, 244

extracting, 196

flat, 196

getting information, 245
including JavaScript contents, 328
listing, 244

md>5 digest, 245

moving, 247

moving to trash, 247

opening, 248

paths, 25

reading into strings or arrays, 249
referencing external, 74
unzipping archives, 250

writing strings or arrays to, 251

Filesystem

copy(), 243
createDirectory(), 243
emptyRecycleBin(), 244
emptyTrash(), 244
functions, ?? to 252
getDirectoryContents(), 244
getDisplayName(), 244
getFileInfo(), 245
getMD5(), 245
getRecycleBinInfo(), 246
getTrashinfo(), 246
isDirectory(), 246
isPathAllowed(), 246
itemExists(), 247
move(), 247

364 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

moveToRecycleBin(), 247
moveToTrash(), 247

useFlashContextMenu, 99

version(), 112

object description, 241 wMode, 103
open(), 248 zoom(), 113
openRecycleBin(), 248 FlashEvent, 210
openTrash(), 248 flat files

readFile(), 249 extracting, 196
remove(), 250 folders

reveal(), 249

unzip(), 250 getting names, 267
volumes, 242 fonts
writeFile(), 251 compression and expansion, 303
zip(), 251 CSS limitations, 295
first-run modification windows, 32, 33 prioritized list, 301
Flash size, 164, 302
allowNetworking, 97 size in text areas, 173
back(), 103 style, 165, 304
base, 98 style in text areas, 173
bgColor, 98 text areas, 171

deviceFont, 98
flashVars, 99
forward(), 103
frameNumber, 99
getVariable(), 104
gotoFrame(), 104
gotoLabel(), 109
isPlaying(), 104
loadMovie(), 105
loop, 100
minVersion, 100
object description, 96
onFsCommand, 100
onFsReadyState, 101

choosing, 324

text settings, 163
weight, 304

forms, user input, 327

Frame
attributes, ?? to 117
end(), 117
functions, ?? to 120
hLineSize, 114
home(), 117
hScrollBar, 115
lineDown(), 117
lineLeft(), 118
lineRight(), 118
lineUp(), 118

pan(), 105 object description, 114
percentLoaded(), 105 pageDown(), 119
play(), 106 pageLeft(), 119
quality, 101 pageRight(), 119

reload(), 106

pageUp(), 120

rewind(), 106 scrollX, 115
sAlign, 101 scrollY, 116
scale, 102 vLineSize, 116

setVariable(), 106
setZoomRect(), 107
src, 102

stop(), 107
StopPlay(), 107
tCallFrame(), 108
tCallLabel(), 108
tCurrentFrame(), 108
tCurrentLabel(), 109
tGetProperty(), 110

tGetPropertyAsNumber(), 110

tGetPropertyNum(), 111
tGotoFrame(), 109
totalFrames(), 110
tPlay(), 111
tSetProperty(), 111
tSetPropertyNum(), 112
tStopPlay(), 112

vScrollBar, 116
frames
adding subviews, 65

horizontal scrollbar, 115

line size, 116
scrolling, 114

scrolling functions, 117 to 120

vertical scrollbars, 116

functions, common, see common attributes and functions

G

getGlobalMousePosition(), 236

global alpha settings, 79
global functions
about, 321
alert(), 322
appleScript(), 322

o,

KONFABULATOR 4.5 REFERENCE MANUAL

365

Index

beep(), 323
bytesToUIString(), 323
chooseColor(), 323
chooseFile(), 324
chooseFolder(), 324
closeWidget(), 326
convertPathToHFS(), 325
convertPathToPlatform(), 325
escape(), 326
focusWidget(), 326

form(), 327

getDisplays(), 328
getMainDisplay(), 328
include(), 328
isApplicationRunning(), 328
konfabulatorVersion(), 329
log(), 329

openURL(), 329

play(), 330

popupMenu(), 330

print(), 331

prompt(), 331

random(), 332
reloadWidget(), 332
resolvePath(), 332
resumeUpdates(), 333
runCommand(), 333
runCommandInBg(), 333
saveAs(), 334
savePreferences(), 335
showWidgetPreferences(), 335
sleep(), 335

speak(), 335
suppressUpdates(), 336
tellwidget(), 336
unescape(), 337
updateNow(), 337
yahooCheckLogin(), 337
yahoologin(), 338
yahoologout(), 339

gradients

adding color stops, 82
creating, 86, 87

graphics

H

see also images

2D, 76

display, 28

global alpha settings, 79
restoring state, 91
saving state, 92

scaling, 93

parent node, 58

previous sibling, 55
horizontal alignment, 51
horizontal offset

objects, 52

registration points, 125

shadows, 159
hot keys

about, 121

code activation, 122

defining functions, 121

platform differences, 354
HotKey

key, 121

modifier, 122

object description, 120

onKeyDown, 122

onKeyUp, 122

Hue-Saturation-Lightness (HSL), 125

hex color method, 295
hierarchy

first child object, 53
last child object, 54
next sibling, 55

icons
retrieving, 129
specifications in dock, 28
IDs vs. names, 27
Image
attributes, ?? to 130
clipRect, 123
colorize, 124
fade(), 130
fillMode, 125
hRegistrationPoint, 125
hslAdjustment, 125
hsITinting, 126
loadingSrc, 127
missingSrc, 127
moveTo(), 130
object description, 123
reload(), 131
remoteAsync, 127
rotation, 59
slide(), 131
src, 128
srcHeight, 128
srcWidth, 129
tileOrigin, 129
useFilelcon, 129
vRegistrationPoint, 130
images
colorizing, 124, 126
compositing mode, 79
context, 77
default tracking style, 189

displaying alternate while loading, 127

drawing, 88

drawing into the context, 78
fading in or out, 130

file icon initialization, 129

366 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

fill options, 125
free-form drawings, 76
HSL adjustments, 125
missing, 127

moving, 130

object background, 298
original height, 128
original width, 129

path, 128

positioning in background, 299
remote settings, 127
repeating, 300

rotating, 59

saving as bitmaps, 71
security dialog path, 190
sliding, 131

specifying alpha value, 58
stylizing in the dock, 29
tiling, 129

updating, 131

vertical offset, 130
visibility, 123

working with, 123

iTunes

J

attributes, ?? to 273
backTrack(), 273
fastForward(), 274
functions, ?? to 276
nextTrack(), 274
object description, 269
pause(), 274

play(), 274
playerPosition, 270
playerStatus, 270
playPause(), 275
random, 270
repeatMode, 270
resume(), 275
rewind(), 275
running, 271
shuffle, 270

stop(), 276
streamURL, 271
trackAlbum, 271
trackArtist, 271
trackLength, 272
trackRating, 272
trackTitle, 272
trackType, 272
version, 273
volume, 273

JavaScript

and XML, 24

converting to platform-specific path, 325
DOM exceptions, 44

global functions, 321

in .kon files, 24
including content of other files, 328
miscellaneous DOM items, 269
specifying, 150
system DOM,, 239

JPEG files, saving as, 71

K

KeyboardEvent, 208
keys
hot, see hot keys
Windows vs. Mac, 354
keyword color method, 295
.kon files
adding script, 150
Konfabulator legacy, 353
Konsposé
activating and deactivating, 192, 220
notifications, 75
window level, 198

L

language settings
current set, 264
default, 40
determining, 190
lightness, adjusting, 125
linear gradients, creating, 86
lines
adding to paths, 89
end cap styles, 80
horizontal size, 114
joining, 80
size when scrolling, 116
width, 81
localization
determining, 190
multiple language support, 40
log out, 339
login
authenticating, 338
support, 39
verifying status, 337

M

Mac OS X compared to Windows OS, 353
memory, getting information, 265
Menultem

checked, 132

enabled, 133

object description, 132

onSelect, 133

title, 133
menus, see context menus
messages, sending between Widgets, 336

o,

KONFABULATOR 4.5 REFERENCE MANUAL

367

Index

metadata onTellWidget, 75
DTD, 355 onTimer, 75
storing, 25 onUnload, 76
miter joins, 81 onWakeFromSleep, 76
mouse onWillChangePreferences, 76
cursor tracking style, 61 onYahoologinChanged, 76
interaction with objects, 227 to 230 opacity
multiple clicks, 57, 230 adjusting in animation, 290
tracking clicks, 56, 226 CSS objects, 305
MouseEvent, 207 fading, 130
setting, 58
N shadows, 159
text, 166
names text area background, 169
applying, 54 text background, 162
company, 187
conventions, 27 P
getting for folders, 267
preference groups, 142 packaging
user-friendly for files, 244 about, 31
vs. IDs, 27 parent views, 60
windows, 200 parser, about, 39
nodes paths, 246
attribute, 48 about, 25
comment, 49 adding arcs, 83
document type, 49 adding bezier curves, 84
element, 48 adding lines, 89
entity, 49 adding quadratic curves, 90
entity reference, 49 adding rectangles, 91
indexed map, 46 beginning, 83
list, 46 clipping, 85
notation, 49 closing, 85
processing instruction, 49 converting JavaScript to platform-specific, 325
text and comment, 47 converting UNIX to HFS, 325
notation nodes, 49 determining directory status, 246
filling, 88
(o) finding, 247
images, 128
objects moving, 90
common features, 50 normalizing, 332
IDs, 27 stroking, 94
naming, 27 Windows vs. Mac, 354
nesting, 43 patterns
offset, see horizontal orrset, vertical offset creating, 86
onGainFocus, 75 filling canvases, 78
onKeyDown, 76 stroking paths, 81
onKeyUp, 76 Perl support, 354
onKonsposeActivated, 75 PHP support, 354
onKonsposeDeactivated, 75 platform
onlLoad, 75 getting information, 267
onLoseFocus, 75 requirements, 194
onMouseDown, 76 Windows and Mac differences, 353
onMouseEnter, 76 PNG files, saving as, 71
onMouseExit, 76 Point, object description, 134
onMouseUp, 76 points, converting
onPreferencesCancelled, 75 parent to view coordinates, 66
onPreferencesChanged, 75 view to parent, 67
onRunCommandInBgComplete, 75 view to window, 67
onScreenChanged, 75 window to view, 66

368 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

Preference
attributes, ?? to 141
defaultValue, 135
description, 136
directory, 136
extension, 136
group, 137
hidden, 137
kind, 137
maxLength, 138
minLength, 138
notSaved, 138
object description, 134
option, 138
optionValue, 139
secure, 139
style, 139
tickLabel, 140
ticks, 140
title, 140
type, 141
value, 141
preference groups
about, 141
icon displayed, 142
names, 142
order of appearance, 142
text display, 143
PreferenceGroup
icon, 142
name, 142
object description, 141
order, 142
title, 143
preferences
automatic, 135
behavioral options, 194
current value, 141
data display, 141
default directory, 136
defaults, 135
dialog styles, 139
display options, 137
file options, 136
groups, 137
hidden, 137
label title display, 140
labeling the slider, 140
notifications, 75
opening panel, 335
pop-up menu options, 138
saving, 335
security, 139
setting, 135
slider display, 140
slider length, 138
system path, 27
text display, 136
turning off auto save, 138

XML description, 135
proglD, 241
prompts, providing, 331

Q

quadratic curves, adding to paths, 90
queries, executing, 313

R

radial gradients, creating, 87
random numbers, generating, 332
Rectangle
containsPoint(), 149
getMaxX(), 146
getMaxY(), 147
getMidX(), 147
getMidY(), 147
getMinX(), 146
getMinY(), 146
height, 145
inset(dX, dY), 145
intersectWith(), 149
isEmpty(), 148
makelntegral(), 148
object description, 143
offset(dX, dY), 145
setEmpty(), 148
unionWith(), 149
width, 144
X, 144
y, 144
rectangles
adding to paths, 91
clearing, 84
filling, 89
insetting, 145
offsetting, 145
outsetting, 145
specifying, 143
stroking, 94
recycle bin
emptying, 244
information on contents, 246
moving files to, 247
opening, 248
redirects, automatic, 343
registration points
horizontal offset, 125
vertical offset, 130
requests
aborting, 346
function to call, 343
sending, 348
setting headers, 348
setting up, 347
text returned, 344
XML DOM returned, 345

o,

KONFABULATOR 4.5 REFERENCE MANUAL

369

Index

responses
getting headers, 347
status, 345
status text, 346
rgb() and rgba() color methods, 295
rows
getting IDs, 311
number affected, 312
working with, 314 to 318

S

sandbox windows, 33
saturation, adjusting, 125
Screen
attributes, ?? to 254
availHeight, 252
availLeft, 253
availTop, 253
availWidth, 253
colorDepth, 253
height, 254
object description, 252
pixelDepth, 254
resolution, 254
width, 254
Script, object description, 150
scripts, suspending execution, 335
ScrollBar
attributes, ?? to 154
autoHide, 151
max, 151
min, 152
object description, 150
onValueChanged, 152
orientation, 153
pageSize, 153
setRange(), 154
setThumblnfo(), 155
setTrackInfo(), 155
thumbColor, 153
value, 154
valueChanged, 224
scrollbars
changing value, 152, 224
current value, 154
displaying in text areas, 172
hiding, 151
horizontal, 115
horizontal offset, 115
maximum value, 151
minimum value, 152
orientation, 153
replacing images, 155
setting range of values, 154
specifying, 150
thumb color, 153
thumb color in text areas, 174
thumb size, 153

vertical, 116

vertical offset, 116
Security, 33

api, 157

object description, 156
security

accessing APls, 157

credentials for APIs, 39

digital signatures, 32

specifying behavior, 156

windows, 32, 33
Settings

object description, 157
Shadow

color, 159

hOffset, 159

object description, 158

opacity, 159

vOffset, 160
shadows

colors, 159, 308

offsets, 159, 309

opacity, 159

recalculating for windows, 201

specifying, 308

specifying parameters, 158

text, 163

windows, 199
shell commands, executing, 333
signatures, digital, 32
simple move events, 229
slider

labeling, 140

maximum length, 138

minimum length, 138

tick mark display, 140
sounds

adjusting volume, 268

checking iTunes volume, 273

muting, 266

playing, 330
spelling, checking in text areas, 173
SQLite

close(), 312

exec(), 313

lastinsertRowID, 311

numRowsAffected, 312

object description, 311

object reference, 311

open(), 312

query(), 313

support for, 311
SQLiteError

errCode, 318

errMsg, 318

object description, 318
SQLiteResult

current(), 314

dispose(), 317

370 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

getAll(), 316
getColumn(), 316
getColumnName(), 317
getRow(), 316
next(), 315
numColumns, 314
object description, 314
rewind(), 315

stacking order, defining, 64

state
determining, 344
restoring, 91
saving, 92
scaling, 93

statements
executing with no result, 313
queries, 313

strings
determining, 196
reading file into, 249
writing to files, 251

stroking paths, 81

styles
applying to images, 29
CSS information, 59
fonts, 304
text display, 165

subviews, 59

superviews, 60

System
airport, 256 to 258
appearance, 258
applicationsFolder, 267
attributes, ?? to 268
battery, 259 to 261
batteryCount, 261
clipboard, 261
Cpu, 262 to 264
event, 264 to ??
languages, 264
memory, 265
mute, 266
object description, 255
platform, 267
temporaryFolder, 267
trashFolder, 267
userDesktopFolder, 267
userDocumentsFolder, 267
userMoviesFolder, 267
userMusicFolder, 267
userPicturesFolder, 267
userWidgetsFolder, 267
volume, 268
widgetDataFolder, 268
wireless, 256 to 258

Text

anchorStyle, 161
bgColor, 161
bgOpacity, 162
color, 162

data, 162
fade(), 166
font, 163
moveTo(), 167
object description, 160
scrolling, 163
shadow, 163
size, 164

slide(), 167
style, 165
truncation, 165
wrap, 166

text

adding effects, 306
alignment, 161, 306
animated scrolling, 163
animating, 167
background color, 161
background opacity, 162
colors, 162

display, 162

elements, 48

fading in or out, 166
font point size, 164
fonts, 163

nodes, base class, 47
returned by request, 344
shadow parameters, 163
sliding, 167

speaking, 335

style parameters, 165
truncating, 310
truncating with ellipses, 165
turning bytes into, 323
word wrapping, 166

text areas

acquiring keyboard focus, 171, 219
activating, 174, 215 to ??, 231 to ??
background color, 168
background opacity, 169
checking spelling, 173
deactivating, 175

displaying scrollbars, 172

editable vs. display only, 170

font size, 173

font style, 173

key acknowledgement, 175
number of columns, 170

object height, 171

protecting information, 172
replacing text, 176

scrollbar thumb color, 174
selecting text, 176

setting font, 171

text color, 169

o,

KONFABULATOR 4.5 REFERENCE MANUAL

371

Index

TextArea
attributes, ?? to 174
bgColor, 168
bgOpacity, 169
color, 169
columns, 170
data, 170
editable, 170
focus(), 174
font, 171
functions, ?? to 176
lines, 171
loseFocus(), 175
object description, 167
onGainFocus, 171
onKeyDown, 172
onKeyPress, 172
onKeyUp, 172
onLoseFocus, 172
rejectKeyPress(), 175
replaceSelection(), 176
scrollbar, 172
secure, 172
select(), 176
size, 173
spellcheck, 173
style, 173
thumbColor, 174
TextEvent, 206
Timer
functions, 178
interval, 177
object description, 176
onTimerFired, 178
reset(), 178
ticking, 177
timerfired, 223
timers
about, 177
determining status, 177
firing frequency, 177
resetting countdown, 178
tint, adjusting, 126
tooltips, 60
tracking, 61
trash
emptying, 244
information on contents, 246
moving files to, 247
opening, 248
triggers
code blocks, 74
hot keys, 121
intervals between, 74
try/catch handlers, 39

U

UNIX system commands, 353

updates
forcing visual, 337
recommended frequency, 28
suppressing, 336

URL
addPostFile(), 282
attributes, ?? to 282
autoRedirect, 277
cancel(), 283
clear(), 283
fetch(), 284
fetchAsync(), 284
functions, ?? to 286
getResponseHeaders(), 285
hostname, 277
location, 277
object description, 276
outputFile, 278
password, 278
path, 278
port, 279
postData, 279
queryString, 280
response, 280
responseData, 280
result, 281
scheme, 281
setRequestHeader(), 285
timeout, 282
username, 282

URLs
opening, 329
string encoding, 326
unencoding escapes, 337

utilities bundle list, 353

\"

versions
3.0,35
3.1,36
4.0, 36
about boxes, 73
BABYLON_VERSION, 36
checking, 329
iTunes, 273
minimum, 35
setting requirements, 191
specifying, 195
vertical alignment, 61
vertical offset
objects, 63
registration points, 130
shadows, 160
text, 161
views
adding, 65
visibility
images, 123

372 | KONFABULATOR 4.5 REFERENCE MANUAL

Index

settings, 62

Widgets, 195
vitality settings in the dock, 29
volume, see sounds
volumes, list of mounted, 242

w

Web
about, 178
autoHScrollBar, 182

automanage horizontal scrollbar, 182

automanage vertical scrollbar, 181
autoVScrollBar, 181

base, 182

bgColor, 181

cancelling loading, 185
horizontal scrollbar, 183
hScrollBar, 183

html, 180

object description, 178
onWebAlert, 184
onWebConfirm, 184
onWebCreateWindow, 184
onWebException, 184
onWebLinkClicked, 184
onWebPagelLoadComplete, 184
onWebPrompt, 185

onWebResourceLoadComplete, 185

onWebResourceRequested, 185
onWebsStatusBarChanged, 185
onWebTitleChanged, 185
onWebURLChanged, 185
read/write access, 182

dockOpen, 189

example, 23

extractFile(), 196
getlocalizedString(), 196
getting started, 23

image, 190

locale, 190

minimumVersion, 191

object description, 186
onDockClosed, 191
onDockOpened, 191
onGainFocus, 192

onldle, 192
onKonsposeActivated, 192
onkonsposeactivated, 220
onKonsposeDeactivated, 192
onload, 192

onLoseFocus, 192
onPreferencesCancelled, 57, 192
onPreferencesChanged, 193
onRunCommandinBgComplete, 193
onruncommandinbgcomplete, 211
onScreenChanged, 193
OnTellWidget, 193

onTimer, 193

onUnload, 193
onWakeFromSleep, 193
onWillChangePreferences, 194
onYahoologinChanged, 194
option, 194

packaging, 31
requiredPlatform, 194
setDockltem(), 196

structure, 23

version, 195

read-only access to status bar, 183
read-only access to title, 183
Reload() function, 186

scrollX, 179

scrollY, 180

setting horizontal scroll, 180

setting textarea background color, 181

setting the base url, 180
setting vertical scroll, 179
setting web page content, 180
statusBar, 183

StopLoading() function, 185
title, 183

url, 180

vertical scrollbar, 182
vScrollBar, 182

WebEvent, 210
Widget

attributes, ?? to 195

author, 187

company, 187

copyright, 188
createWindowFromXML(), 195
debug, 188

defaultTracking, 189

visible, 195
Widget Converter utility, 31, 351
.widget extension, 31
widget.xml file, 25
WiFi information, accessing, 256
Window
focus(), 200
level, 198
locked, 198
moveTo(), 201
object description, 197
onFirstDisplay, 199
onGainFocus, 199
onLoseFocus, 199
recalcShadow(), 201
root, 199
shadow, 199
title, 200
windows
activation, 199
bringing to front, 200
deactivation, 199
disabling dragging, 198
features, 197

o,

KONFABULATOR 4.5 REFERENCE MANUAL

373

Index

first-run/modification, 32, 33

moving, 201

name display, 200

nesting objects, 43

position, 198

recalculating shadows, 201

removing objects, 70

root view, 199

sandbox, 33

security, 32, 33

shadow settings, 199
Windows OS compared to Mac OS X, 353

X

XML
and JavaScript, 24
base class, 45
document attributes, 44
over HTTP, 342
parser, 24
parsing, 341
service features, 39
services, 341
syntax, 24

XML DOM, 44

XMLDOM
createDocument(), 341
object description, 341
parse(), 341

XMLHttpRequest
abort(), 346
attributes, ?? to 346, ?? to 346
autoRedirect, 343
functions, ?? to 348
getAllResponseHeaders(), 347
getResponseHeader, 347
object description, 342
onreadystatechange, 343
open(), 347
readyState, 344
responseText, 344
responseXML, 345
send(), 348
setRequestHeader(), 348
status, 345
statusText, 346
timeout, 346

XPath
example functionality, 349
overview, 349
support, 39

Z

Zip archives
creating, 251
extracting, 250
packaging with, 31

z-order
moving above, 68
moving below, 69

374 | KONFABULATOR 4.5 REFERENCE MANUAL

	Release History
	Contents
	The Basics
	Widget Consolidation
	XML Syntax
	JavaScript
	File Paths
	Widget Metadata
	CSS Styles
	Event Handlers
	Object Names
	Widget Preferences
	Frames and Subviews
	Working with the Widget Dock

	Publishing Your Widget
	Widget File Structure
	Widget Packaging
	Giving Your Widget an Identifier
	Updating Your Widget
	Digital Signatures
	Security Windows
	Security
	Security Definition Details
	What happened to api?
	What about older widgets?
	Security Violation

	Advanced
	Migrating From Previous Versions
	Version 3.0
	Version 3.1
	Version 4.0
	Version 4.5

	Entities
	Widget Runtime
	Debugging
	Exceptions
	XML Services
	Yahoo! Login Support
	Localized Widgets

	Core DOM Reference
	The DOM
	XML DOM API
	DOMException
	DOMDocument
	DOMNode
	DOMNodeList
	DOMNamedNodeMap
	DOMCharacterData
	DOMAttribute
	DOMElement
	DOMText
	DOMComment
	DOMCDATASection
	DOMDocumentType
	DOMNotation
	DOMEntity
	DOMEntityReference
	DOMProcessingInstruction

	Common Attributes and Functions
	contextMenuItems
	hAlign
	height
	hOffset
	id
	firstChild
	lastChild
	name
	nextSibling
	previousSibling
	onClick
	onContextMenu
	onDragDrop
	onDragEnter
	onDragExit
	onMouseDown
	onMouseDrag
	onMouseEnter
	onMouseExit
	onMouseMove
	onMouseUp
	onMouseWheel
	onMultiClick
	onTextInput
	opacity
	parentNode
	rotation
	style
	subviews
	superview
	tooltip
	tracking
	vAlign
	visible
	vOffset
	width
	window
	zOrder
	addSubview()
	appendChild()
	convertPointFromParent()
	convertPointFromWindow()
	convertPointToParent()
	convertPointToWindow()
	getElementById()
	orderAbove()
	orderBelow()
	removeChild()
	removeFromParentNode()
	removeFromSuperview()
	saveImageToFile()

	About Box
	about-image
	about-text
	about-version

	Action
	file
	interval
	trigger

	Canvas
	getContext()

	CanvasRenderingContext2D
	fillStyle
	globalAlpha
	globalCompositeOperation
	lineCap
	lineJoin
	lineWidth
	miterLimit
	strokeStyle
	addColorStop()
	arc()
	beginPath()
	bezierCurveTo()
	clearRect()
	clip()
	closePath()
	createLinearGradient()
	createPattern()
	createRadialGradient()
	drawImage()
	fill()
	fillRect()
	lineTo()
	moveTo()
	quadraticCurveTo()
	rect()
	restore()
	rotate()
	save()
	scale()
	stroke()
	strokeRect()
	translate()

	Flash
	allowNetworking
	base
	bgColor
	deviceFont
	frameNumber
	useFlashContextMenu
	flashVars
	loop
	minVersion
	onFsCommand
	onFsReadyState
	quality
	sAlign
	scale
	src
	wMode
	back()
	forward()
	getVariable()
	gotoFrame()
	isPlaying()
	loadMovie()
	pan()
	percentLoaded()
	play()
	reload()
	rewind()
	setVariable()
	setZoomRect()
	stop()
	stopPlay()
	tCallFrame()
	tCallLabel()
	tCurrentFrame()
	tCurrentLabel()
	tGotoFrame()
	tGotoLabel()
	totalFrames()
	tGetProperty()
	tGetPropertyAsNumber()
	tGetPropertyNum()
	tPlay()
	tSetProperty()
	tSetPropertyNum()
	tStopPlay()
	version()
	zoom()
	Properties and Property Numbers

	Frame
	hLineSize
	hScrollBar
	scrollX
	scrollY
	vLineSize
	vScrollBar
	end()
	home()
	lineDown()
	lineLeft()
	lineRight()
	lineUp()
	pageDown()
	pageLeft()
	pageRight()
	pageUp()
	updateScrollBars()

	HotKey
	key
	modifier
	onKeyDown
	onKeyUp

	Image
	clipRect
	colorize
	fillMode
	hRegistrationPoint
	hslAdjustment
	hslTinting
	loadingSrc
	missingSrc
	remoteAsync
	src
	srcHeight
	srcWidth
	tileOrigin
	useFileIcon
	vRegistrationPoint
	fade()
	moveTo()
	reload()
	slide()

	MenuItem
	checked
	enabled
	onSelect
	title

	Point
	Preference
	defaultValue
	description
	directory
	extension
	group
	hidden
	kind
	maxLength
	minLength
	notSaved
	option
	optionValue
	secure
	style
	ticks
	tickLabel
	title
	type
	value

	PreferenceGroup
	name
	icon
	order
	title

	Rectangle
	x
	y
	width
	height
	offset(dX, dY)
	inset(dX, dY)
	getMinX()
	getMinY()
	getMaxX()
	getMaxY()
	getMidX()
	getMidY()
	setEmpty()
	isEmpty()
	makeIntegral()
	containsPoint(Point | x,y)
	unionWith(Rectangle | x, y, width, height)
	intersectWith(Rectangle | x, y, width, height)

	Script
	ScrollBar
	autoHide
	max
	min
	onValueChanged
	orientation
	pageSize
	thumbColor
	value
	setRange()
	setThumbInfo()
	setTrackInfo()

	Security
	api

	Settings
	Shadow
	color
	hOffset
	opacity
	vOffset

	Text
	anchorStyle
	bgColor
	bgOpacity
	color
	data
	font
	scrolling
	shadow
	size
	style
	truncation
	wrap
	fade()
	moveTo()
	slide()

	TextArea
	bgColor
	bgOpacity
	color
	columns
	data
	editable
	font
	lines
	onGainFocus
	onKeyDown
	onKeyPress
	onKeyUp
	onLoseFocus
	secure
	scrollbar
	size
	spellcheck
	style
	thumbColor
	focus()
	loseFocus()
	rejectKeyPress()
	replaceSelection()
	select()

	Timer
	interval
	ticking
	onTimerFired
	Functions
	reset()

	Web
	scrollX
	scrollY
	url
	html
	bgColor
	autoVScrollBar
	autoHScrollBar
	base
	vScrollBar
	hScrollBar
	title
	statusBar
	onWebAlert
	onWebConfirm
	onWebCreateWindow
	onWebException
	onWebLinkClicked
	onWebPageLoadComplete
	onWebPrompt
	onWebResourceLoadComplete
	onWebResourceRequested
	onWebStatusBarChanged
	onWebTitleChanged
	onWebURLChanged
	stopLoading()
	reload()

	Widget
	author
	company
	copyright
	debug
	defaultTracking
	dockOpen
	image
	locale
	minimumVersion
	onDockClosed
	onDockOpened
	onGainFocus
	onIdle
	onKonsposeActivated
	onKonsposeDeactivated
	onLoad
	onLoseFocus
	onPreferencesCancelled
	onPreferencesChanged
	onRunCommandInBgComplete
	onScreenChanged
	onTellWidget
	onTimer
	onUnload
	onWakeFromSleep
	onWillChangePreferences
	onYahooLoginChanged
	option
	requiredPlatform
	version
	visible
	createWindowFromXML()
	extractFile()
	getLocalizedString()
	setDockItem()

	Window
	level
	locked
	onFirstDisplay
	onGainFocus
	onLoseFocus
	root
	shadow
	title
	focus()
	getBestDisplay()
	moveTo()
	recalcShadow()

	Events
	Event Listeners
	Default Actions
	Older Engine Behavior
	Konfabulator Events
	Event Classes
	DOMEvent
	DataEvent
	TextEvent
	MouseEvent
	KeyboardEvent
	DragDropEvent
	FlashEvent
	WebEvent

	Event Reference
	Data Events
	runcommandinbgcomplete
	tellwidget

	DragDrop Events
	dragdrop
	dragenter
	dragexit

	Flash Events
	fscommand
	fsreadystate

	Keyboard Events
	keydown
	keypress
	keyup

	Miscellaneous Events
	contextmenu
	dockclosed
	dockopened
	firstdisplay
	gainfocus
	idle
	konsposeactivated
	konsposedeactivated
	load
	losefocus
	preferencescancelled
	preferenceschanged
	screenchanged
	timer
	timerfired
	unload
	valuechanged
	wakefromsleep
	willchangepreferences
	yahoologinchanged

	Mouse Events
	click
	mousedown
	mousedrag
	mouseenter
	mouseexit
	mousemove
	mouseup
	mousewheel
	multiclick

	Text Events
	textinput

	Web Events
	webalert
	webconfirm
	webcreatewindow
	webexception
	weblinkclicked
	webpageloadcomplete
	webprompt
	webresourceloadcomplete
	webresourcerequested
	webstatusbarchanged
	webtitlechanged
	weburlchanged

	Event Functions
	getGlobalMousePosition()

	System DOM Reference
	COM
	COM.connectObject
	COM.createObject
	COM.disconnectObject

	Filesystem
	filesystem.volumes
	filesystem.copy()
	filesystem.createDirectory()
	filesystem.emptyRecycleBin() filesystem.emptyTrash()
	filesystem.getDirectoryContents()
	filesystem.getDisplayName()
	filesystem.getFileInfo()
	filesystem.getMD5()
	filesystem.getRecycleBinInfo() filesystem.getTrashInfo()
	filesystem.isDirectory()
	filesystem.isPathAllowed()
	filesystem.itemExists()
	filesystem.move()
	filesystem.moveToRecycleBin() filesystem.moveToTrash()
	filesystem.open()
	filesystem.openRecycleBin() filesystem.openTrash()
	filesystem.readFile()
	filesystem.reveal()
	filesystem.remove()
	filesystem.unzip()
	filesystem.writeFile()
	filesystem.zip()

	Screen
	screen.availHeight
	screen.availLeft
	screen.availTop
	screen.availWidth
	screen.colorDepth
	screen.height
	screen.pixelDepth
	screen.resolution
	screen.width

	System
	system.airport, system.wireless
	system.airport.available, system.wireless.available
	system.airport.info, system.wireless.info
	system.airport.network, system.wireless.network
	system.airport.noise, system.wireless.noise
	system.airport.powered, system.wireless.powered
	system.airport.signal, system.wireless.signal
	system.appearance
	system.battery
	system.battery[n].currentCapacity
	system.battery[n].isCharging
	system.battery[n].isPresent
	system.battery[n].maximumCapacity
	system.battery[n].name
	system.battery[n].powerSourceState
	system.battery[n].timeToEmpty
	system.battery[n].timeToFullCharge
	system.battery[n].transportType
	system.batteryCount
	system.clipboard
	system.cpu
	system.cpu.activity
	system.cpu.idle
	system.cpu.nice
	system.cpu.numProcessors
	system.cpu.sys
	system.cpu.user
	system.event
	system.languages
	system.memory
	system.memory.availPhysical
	system.memory.availVirtual
	system.memory.load
	system.memory.totalPhysical
	system.memory.totalVirtual
	system.mute
	system.platform
	system.userDocumentsFolder, system.userDesktopFolder, system.userPicturesFolder, system.userMoviesFolder, system.userMusicFolder, system.userWidgetsFolder, system.applicationsFolder, system.temporaryFolder, system.trashFolder
	system.volume
	system.widgetDataFolder

	Miscellaneous DOM Reference
	iTunes
	iTunes.playerPosition
	iTunes.playerStatus
	iTunes.random iTunes.shuffle
	iTunes.repeatMode
	iTunes.running
	iTunes.streamURL
	iTunes.trackAlbum
	iTunes.trackArtist
	iTunes.trackLength
	iTunes.trackRating
	iTunes.trackTitle
	iTunes.trackType
	iTunes.version
	iTunes.volume
	iTunes.backTrack()
	iTunes.fastForward()
	iTunes.nextTrack()
	iTunes.pause()
	iTunes.play()
	iTunes.playPause()
	iTunes.resume()
	iTunes.rewind()
	iTunes.stop()

	URL Object
	URL.autoRedirect
	URL.hostname
	URL.location
	URL.outputFile
	URL.password
	URL.path
	URL.port
	URL.postData
	URL.queryString
	URL.response
	URL.responseData
	URL.result
	URL.scheme
	URL.timeout
	URL.username
	URL.addPostFile()
	URL.cancel()
	URL.clear()
	URL.fetch()
	URL.fetchAsync()
	URL.getResponseHeaders()
	URL.setRequestHeader()

	Animation
	Animator
	animator.ease()
	animator.kEaseIn, animator.kEaseOut, animator.kEaseInOut, animator.kEaseNone
	animator.milliseconds
	animator.runUntilDone()
	animator.start()

	animation.kill()
	CustomAnimation()
	FadeAnimation()
	MoveAnimation()
	RotateAnimation()
	ResizeAnimation()

	JSON
	JSON.stringify
	JSON.parse

	Display
	Display.rect
	Display.workRect

	CSS Reference
	Usage
	CSS Colors
	Common Styles
	background
	backgroundAttachment
	backgroundColor
	backgroundImage
	backgroundPosition
	backgroundRepeat
	color
	fontFamily
	fontSize
	fontStretch
	fontStyle
	fontWeight
	opacity
	textAlign
	textDecoration
	KonBackgroundFill
	KonShadow
	KonShadowColor
	KonShadowOffset
	KonTextTruncation

	SQLite Reference
	SQLite Object
	lastInsertRowID
	numRowsAffected
	open()
	close()
	exec()
	query()

	SQLiteResult
	numColumns
	current()
	next()
	rewind()
	getAll()
	getRow()
	getColumn()
	getColumnName()
	dispose()

	SQLiteError
	errCode
	errMsg

	Global Functions
	alert()
	appleScript()
	beep()
	bytesToUIString()
	chooseColor()
	chooseFile()
	chooseFolder()
	convertPathToHFS()
	convertPathToPlatform()
	closeWidget()
	escape()
	focusWidget()
	form()
	getMainDisplay()
	getDisplays()
	include()
	isApplicationRunning()
	konfabulatorVersion()
	log()
	openURL()
	play()
	popupMenu()
	print()
	prompt()
	random()
	reloadWidget()
	resolvePath()
	resumeUpdates()
	runCommand()
	runCommandInBg()
	saveAs()
	savePreferences()
	showWidgetPreferences()
	sleep()
	speak()
	suppressUpdates()
	tellWidget()
	unescape()
	updateNow()
	yahooCheckLogin()
	yahooLogin()
	yahooLogout()

	XML Services
	About XML Services
	XMLDOM Object
	XMLDOM.createDocument()
	XMLDOM.parse()

	XMLHttpRequest
	XMLHttpRequest.autoRedirect
	XMLHttpRequest.onreadystatechange
	XMLHttpRequest.readyState
	XMLHttpRequest.responseText
	XMLHttpRequest.responseXML
	XMLHttpRequest.status
	XMLHttpRequest.statusText
	XMLHttpRequest.timeout
	XMLHttpRequest.abort()
	XMLHttpRequest.getAllResponseHeaders()
	XMLHttpRequest.getResponseHeader()
	XMLHttpRequest.open()
	XMLHttpRequest.send()
	XMLHttpRequest.setRequestHeader()

	XPath Support

	The Converter Tool
	Windows OS and Mac OS X Differences
	UNIX Commands
	Command Key
	Key Names
	Hot Keys
	Paths
	Perl and PHP

	Appendix A: DTDs
	Metadata DTD
	Widget Dock Item DTD

	Acknowledgments
	Index

